Как определить рабочее давление манометра. Манометры

Как правильно подобрать технический манометр.

Каждый сосуд или трубопровод должны быть снабжены манометрами. Манометр устанавливается на штуцере сосуда или трубопроводе между сосудом и запорной арматурой. Манометры должны иметь класс точности не ниже: 2,5 – при рабочем давлении сосуда до 2,5 МПА (25 кгс/см2), 1,5 – при рабочем давлении сосуда выше 2,5МПА (25 кгс/см2). Манометр должен выбираться с такой шкалой, чтобы предел измерения рабочего давления находился во второй трети шкалы. На шкале манометра владельцем сосуда должна быть нанесена красная черта, указывающая рабочее давление в сосуде. Взамен красной черты разрешается прикреплять к корпусу манометра металлическую пластину, окрашенную в красный цвет и плотно прилегающую к стеклу манометра. Манометр должен быть установлен так, чтобы его показания были отчётливо видны обслуживающему персоналу. Диаметр корпуса манометров, устанавливаемых на высоте до 2-х метров от уровня площадки наблюдения за ними, должен быть не менее 100 мм, на высоте от 2-х до 3-х метров – не менее 160 мм. Установка манометров на высоте более 3 метров от уровня площадки не разрешается.

Манометр не допускается к применению в случаях, когда:

отсутствует пломба или клеймо с отметкой о проведении поверки;

просрочен срок поверки;

стрелка при его отключении не возвращается к нулевому показанию шкалы на величину, превышающую половину допускаемой погрешности для данного прибора;

разбито стекло или имеются повреждения на корпусе, которые могут отразиться на правильности его показаний.

Поверка манометров с их опломбированием или клеймением должна производиться не реже одного раза в 12 месяцев. Кроме того, не реже одного раза в 6 месяцев на объекте должна производиться дополнительная проверка рабочих манометров контрольным манометром с записью результатов в журнал контрольных проверок.

9. Технологическая схема колонны отдувки сероводорода УПВСН (ДНС) – описание.

Колонна отдувки сероводорода предназначена для удаления сероводорода из нефти. Смысл процесса заключается в том, что газ, очищенный от сероводорода при многократном контакте, сероводород содержащей нефтью, выделяет сероводород из нефти. Чем лучше контакт газа с нефтью, тем лучше очищение нефти.

Описание технологической схемы:

Сероводород, содержащий нефть, после печей ПТБ-10 №1,2,3 подается в верхнюю часть колонны К-1. Для обеспечения хорошего контакта нефти с газом, полость колонны заполнена специальными насадками типа АВР (см.рис.), по которым нефть оттекает в нижнюю часть колонны.



Для предотвращения проскока газа через низ колонны, необходимо, поддерживать в нижней части колонны определенный уровень жидкости, он поддерживается с помощью электрозадвижки автоматически.

1) поддерживать соответствующее соотношение газа к нефти. Если электрозадвижка открыта полностью, но газа не хватает, значит МУСО не обеспечивает необходимым количеством газа, надо позволить на МУСО и предупредить ответственных ИТР цеха.

2) если уровень в колонне выше максимального и произошел резкий рост давления в колонне, значит, колонна наполнилась нефтью и нефть попала на теплообменник. Необходимо, немедленно снизить расход нефтина Н-1, Н-2, проверить эл.задвижку (не закрылась ли), приоткрыть байпас на эл.задвижке.

10. Уровнемер У-1500 – назначение, устройство, принцип работы.

Уровнемер У1500 предназначен для автоматического дистанционного определения уровня жидкости (или уровня раздела фаз) в резервуаре по двум независимым каналам (датчикам) и отображения результатов измерений на цифровом дисплее с поочередной индикацией по каждому каналу, а также выдачи результата измерений в виде аналогового токового сигнала (только по первому каналу) и в виде цифрового сигнала по последовательному каналу в стандарте В5-485 для использования в системах управления, сигнализации и регистрации.

Кроме того, предусмотрена возможность задавать и непрерывно контролировать два значения уровня: верхний сигнализируемый уровень (ВСУ) и нижний сигнализируемый уровень (НСУ), при достижении которых срабатывают звуковая и световая сигнализация, а так­ же активизируются соответствующие реле и оптрон.

В процессе работы ведется непрерывный контроль работоспособности датчиков и линий связи с соответствующей световой и звуковой сигнализацией от­казов по каждому каналу.

Диапазон измерения, м 0,2..15
Дискретность измерения, см 1
Длина линии связи, м, не более 1000
Вид кабеля коаксиальный (РК-50, РК-75)

  1. Порядок подготовки аппарата к ремонту.

К самостоятельной работе по обслуживанию сосудов, работающих под давление, допускаются операторы ООУ:

Не моложе 18 лет, на месторождениях с высоким содержанием сероводорода допускаются лица не моложе 21 года;

Имеющие медицинское заключение о пригодности к работе в дыхательных аппаратах изолирующего типа;

Прошедшие обучение, проверку знаний и имеющие удостоверение на право обслуживание сосудов, работающих под давление;

Прошедшие вводный инструктаж, инструктаж на рабочем месте и проверку знаний по специфике выполняемой работе, в том числе по электробезопасности, с присвоением II квалификационной группы; -прошедшие занятия по пожарно-техническому минимуму и имеющие удостоверение по технике пожарной безопасности.

Перед началом работы необходимо проверить и привести в порядок спецодежду, спецобувь и другие средства индивидуальной защиты (противогаз фильтрующий изолирующего типа, шланговый противогаз ПШ-1 или ПШ-2, предохранительный пояс, рукавицы, лестницы, спасательные верёвки, каски, диэлектрические перчатки). Все средства защиты должны быть проверены и иметь соответствующую документацию о проведённом контроле. Перед проведением работ по обслуживанию сосуда (ревизия ППК, внутренний осмотр сосуда) должен быть оформлен наряд-допуск на проведение газоопасных работ. Перед проведением внутреннего осмотра аппарат надо остановить, стравить давление до атмосферного, освободить от заполняющей его среды, установить заглушки во фланцевые соединения подводящих и отводящих трубопроводов. Затем произвести пропарку аппарата не менее 24-х часов, слить в канализацию конденсат, далее охладить до температуры, не превышающей 30 градусов по Цельсию, установить заглушку на дренажную задвижку. Взять анализ воздушной среды на загазованность в нескольких местах внутри аппарата. Если загазованность превышает ПДК, аппарат заново пропаривают, затем берут анализ воздушной среды. Перед началом газоопасных работ ответственный за их проведение должен опросить каждого исполнителя о его самочувствии. Входить в газоопасное место можно только с разрешения ответственного за проведение работ и в соответствующих средствах защиты, надетых за пределах опасной зоны.

Единицы измерения давления

Основной единицей давления в системе СИ является паскаль (Па).

«Один паскаль - это давление на плоской поверхности под действием силы, которая направлена перпендикулярно и равномерно распределена к поверхности и равняется 1 Ньютону».

На практике используют килопа-скаль (кПа) или мегапаскаль (МПа), так как единица Па слишком мала.

В эксплуатируемых в настоящее время манометрах также используется единица системы МКГСС (метр, кило-грамм-сила, секунда) килограмм-сила на квадратный метр () и внесистемные единицы измерения к примеру килограмм-сила на квадратный сантиметр ().

Также распространенной единицей измерения является бар (1 бар =10 Па = 1,0197 кгс/см). Именно в барах градуированы исследуемые манометры.

Соотношения между единицами измерения давления можно вычислить по формуле:

P 1 =KЧP 2 , (1.4 )

где P 1 - давление в нужных единицах; P 2 - давление в исходных единицах.

Значение коэффициента K приведены таблице 1.1.

Таблица 1.1.

Манометры. Классификация манометров

ГОСТ 8.271-77 определяет манометр как при-бор или измерительную установку для определения действительного значения давления или разности давлений.

Манометры классифицируются по следующим характеристикам:

  • типу давления, на которое рассчитан манометр;
  • принципу действия манометра;
  • назначению манометра;
  • классу точности манометра;
  • особенностям измеряемой среды;

Классифицируя манометры по типу измеряемого давления, можно разделить на:

  • - измеряющие абсолютное давление;
  • - измеряющие избыточное давление;
  • - измеряющие разряженное давление, которые называются вакуумметры;

Большинство выпускаемых манометров предназначены для измерения избыточного давления. Их особенность заключается в том, что при воздействии атмосферного давления на чувствительный элемент, приборы показывают “ноль”.

Также существует множество вариаций приборов, объединенных единым названием “манометр”, например мановакуумметры, напоромеры, тягомеры, тягонапоромеры, дифнанометры.

Мановакуумметр- манометр, с возможностью измерения как избыточного давления, так и давление разреженного газа (вакуума).

Напоромер- манометр, позволяющий измерить сверхмалые значения избыточного давления (до 40 кПа).

Тягомер- вакуумметр, позволяющий измерить малые значения вакуумметрического давления (до -40 кПа).

Дифнанометр- прибор, предназначенный для измерения разности давления в двух точках.

«По принципу действия манометры классифицируются на:

  • - жидкостные;
  • - деформационные;
  • - грузопоршневые;
  • - электрические;».

К жидкостным относят манометры, принцип действия которых основан на разности давлений давлением столба жидкости. Примером такого манометра являются U- образные манометры. Они состоят из градуированных сообщающихся сосудов, в которых измеряемое давление можно определить по уровню жидкости в одном из сосудов.

Рис. 1.1. U-образиый жидкостный стеклян-ный мановакуумметр:

1 -- U-образная стеклянная трубка; 2 --скобы крепления; 3 -- основа; 4 -- шкала.

Деформационные манометры основаны на зависимости степени деформации чувствительного элемента от давления, подаваемого на этот элемент. В основном в качестве чувствительного элемента выступает трубчатая пружина. О них поподробнее мы узнаем далее.

Электрические манометры работают на основе зависимости электрических параметров чувствительного элемента преобразователя от давления.

В грузопоршневых манометрах в качестве рабочего тела используется жидкость, которая создает давление. Это давление уравновешивается массой поршня и грузов.

По количеству грузов, необходимых для равновесия мы и определяем давление, которое создает жидкость.

Рис. 1.2. Принципиальная схема грузопоршневого манометра:

1 --бак для масла, 2 --насос, 3 --клапаны, 4, 5, б --вентили подвода, слива и измерительной колонки соответст-венно, 7 --измерительная колонка, 8, 9 --стойки, 10, 11 --вентили стоек, 12 --пресс.

По назначению манометры подразделяются на общетехнические и эталонные. Общетехнические предназначены для проведения измерений в процессе производственной деятельности. В общетехнических конструктивно предусмотрена виброустойчивость к частотам находящимся в пределах 10-55 Гц. Также предусматривают устойчивость к внешним воздействиям таких как:

  • - попадание внешних предметов;
  • - температурные воздействия;
  • - попадание воды;

«Эталонные манометрические приборы предназначены для хранения и передачи размера единиц давления для обеспечения единства, достоверности и гарантии высокой точности измерений давления».

«По особенностям измеряемой среды все манометры классифицируются на:

  • общетехнические;
  • коррозионно-стойкие (кислотостойкие);
  • виброустойчивые;
  • специальные;
  • кислородные;
  • газовые».

Общетехнические манометрические приборы ориентированы на измерения в нормальных условиях. Изготавливаются из алюминия и медных сплавов.

Коррозионно-стойкие приборы изготавливаются из химически стойких материалов таких как сталь различной маркировки. Также снабжаются каленым многослойным стеклом.

Специальные манометры предназначены для измерения сред с отличными от нормальных условий, например для измерения давления вязких веществ или содержащих твердые частицы.

Виброустойчивые манометры используются в условиях эксплуатации, где частота вибрации превышает 55 Гц. Внутренний объем таких манометров заполняют вязкой жидкостью, например глицерином или силиконом. Корпус в виброустойчивом манометре должен быть герметичным и содержать в себе специальные уплотнители из каучуковых резин.

В газовых манометрах применяется ряд конструктивных решений, которые должны обеспечить безопасность в случае разрыва чувствительного элемента. Устанавливается разделительная перегородка между шкалой и чувствительным элементом. Смотровое окно в таких манометрах многослойное с упрочнением. На задней стенке предусмотрен разгрузочный клапан, который в случае превышения допустимого давления раскрывается и сбрасывает давление. При производстве особое внимание уделяют материалам т.к многие газы обладают специфическими свойствами.

«Кислородные манометры применяются для измерения давления в средах с долей кислорода 23% и более». Так как при контакте кислорода с некоторыми органическими веществами и минеральными маслами он детонирует к ним предъявляют строгие требования у чистоте от масел. Конструктивно не отличаются от общетехнических манометров.

Необходимые метки на манометрах

На циферблате манометра обязательно должны быть нанесены:

  • 1) Единицы измерения;
  • 2) Рабочее положение прибора;
  • 3) Класс точности;
  • 4) Наименование измеряемой среды в случаем специального исполнения прибора;
  • -товарный знак предприятия изготовителя;
  • -знак Государственного реестра;

В таблице 1.2 указаны основные обозначения на циферблате манометров.

Таблица 1.2

Также должны обозначаться метки об устойчивости к внешним условиям.

Таблица 1.3

И также обозначается степень защиты от внешних воздействий.

Термин «манометр», используемый в тексте, является обобщающим и помимо непосредственно манометров, также подразумевает вакуумметры и мановакуумметры. В данном материале не рассматриваются цифровые приборы.

Манометры - одни из самых распространенных приборов в промышленности и ЖКХ. Уже более ста лет они надежно служат людям. Потребности производства инициировали разработку манометров различного назначения, отличающихся размерами, конструкцией, присоединительной резьбой, диапазонами и единицами измерений, классом точности. Неправильный выбор приборов приводит к их преждевременному выходу из строя, недостаточной точности измерений или переплате за излишний функционал.

Манометры можно классифицировать по следующим критериям.

  1. По области применения.

1.1. Технические манометры стандартного исполнения - предназначены для измерения избыточного и вакуумметрического давления неагрессивных, некристаллизующихся жидкостей, пара и газа.

1.2. Технические специальные - манометры для работы с конкретными средами или в специфических условиях. К специальным относятся следующие манометры:

Кислородные;

Ацетиленовые;

Аммиачные;

Коррозионностойкие;

Виброустойчивые;

Судовые;

Железнодорожные;

Манометры для пищевой промышленности.

Кислородные манометры конструктивно не отличаются от технических манометров, но в процессе производства проходят дополнительную очистку от масел, так как при соприкосновении кислорода с маслами может произойти воспламенение или взрыв. На шкалу наносится обозначение О 2 .

Ацетиленовые манометры изготавливаются без использования меди и ее сплавов. Это обусловлено тем, что при взаимодействии меди и ацетилена образуется взрывоопасная ацетиленистая медь. Ацетиленовые манометры маркируются символами С 2 Н 2 .

Аммиачные и коррозионностойкие манометры имеют механизмы из нержавеющей стали и сплавов, не подверженных коррозии при взаимодействии с агрессивными средами.

Конструкция виброустойчивых манометров обеспечивает работоспособность при воздействии вибрации в диапазоне частот, примерно в 4-5 раз превышающем допустимую частоту вибрации стандартных технических манометров.

Некоторые типы виброустойчивых манометров могут заполняться демпфирующей жидкостью. В качестве демпфирующей жидкости используют глицерин (диапазон рабочих температур от -20 до +60 о С) или жидкость ПМС-300 (диапазон рабочих температур от -40 до +60 о С).

Манометры для пищевой промышленности не имеют прямого контакта с измеряемой средой и отделены от нее мембранным разделительным устройством. Надмембранное пространство заполняется специальной жидкостью, которая передает усилие на механизм манометра.

Корпуса манометров обычно окрашивают в цвет соответствующий области применения: аммиачные - в желтый, ацетиленовые - в белый, для водорода - в темно-зеленый, для горючих газов, например, пропана, - в красный, для кислорода - в голубой, для негорючих газов - в черный.

2. Электроконтактные (сигнализирующие) манометры.

Электроконтактные (сигнализирующие) манометры имеют в своем составе контактные группы для подключения внешних электрических цепей. Используются для поддержания давления в технологических установках в заданном диапазоне.

Контактные группы электроконтактных (сигнализирующих) манометров согласно ГОСТ 2405-88 могут иметь одно из четырех исполнений:

III - два размыкающих контакта: левый указатель (min) - синий, правый (max) - красный;

IV - два замыкающих контакта: левый указатель (min) - красный, правый (max) - синий;

V - левый контакт размыкающий (min); правый замыкающий контакт (max) - оба указателя синие;

VI - левый контакт замыкающий (min); правый контакт размыкающий (max) - оба указателя красные.

Большинство российских заводов принимает исполнение V в качестве стандартного. То есть если в заявке не будет указано исполнение электроконтактного манометра, то заказчик почти гарантированно получит прибор с контактными группами этого исполнения. При отсутствии паспорта можно определить исполнение контактных групп по цвету указателей.

Электрокониактные (сигнализирующие) манометры подразделяются на общепромышленные и взрывозащищенные. К заказу взрывозащищенных манометров нужно подходить очень тщательно, с тем, чтобы вид взрывозащиты прибора соответствовал объекту повышенной опасности.

3. Единицы измерения давления.

Градуировка шкал манометров осуществляется в одной из единиц: кгс/см 2 , бар, кПа, МПа. Однако нередко можно встретить манометры с двойной шкалой. Первая шкала проградуирована в одной из перечисленных выше единиц, вторая в psi - фунт-силах на квадратный дюйм. Данная единица является внесистемной и применяется в основном в США. В табл. 1 приведено соотношение указанных единиц между собой.

Табл. 1. Соотношение единиц давления

Па

кПа

МПа

кгс/см 2

бар

Па

10 -3

10 -6

10,197*10 -6

10 -5

кПа

10 3

10 -3

10,197*10 -3

10 -2

Мпа

10 6

10 3

10,1972

кгс/см 2

98066,5

98,0665

0,980665

0,980665

бар

10 5

1,0197

6894,76

6,8948

6,8948*10 −3

70,3069*10 −3

68,9476*10 −3

Приборы, проградуированные в кПа, называют манометрами для измерения низких давлений газов. В качестве чувствительного элемента используется мембранная коробка, тогда как в манометрах на большие давления применяют изогнутую или спиральную трубку.

4. Диапазон измеряемых давлений.

В физике различают несколько видов давления: абсолютное, барометрическое, избыточное, вакуум. Абсолютное давление - это давление измеренное относительно абсолютного вакуума. Абсолютное давление отрицательным быть не может.

Барометрическое - это атмосферное давление, которое зависит от высоты над уровнем моря, температуры и влажности воздуха. На отметке ноль метров над уровнем моря оно принято равным 760 мм ртутного столба. В технических манометрах эта величина принята за нуль, то есть значение барометрического давления на результаты измерений не влияет.

Избыточное давление - это разность между абсолютным давлением и барометрическим, при условии, что абсолютное давление превышает барометрическое.

Вакуум - разность абсолютного давления и барометрического, когда абсолютное давление меньше барометрического. Поэтому вакуумметрическое давление не может быть больше барометрического.

Исходя из этого становится понятно, что вакуумметры измеряют разряжение. Мановакуумметры перекрывают область вакуума и избыточного давления. Манометры измеряют избыточное давление. Существует еще один класс приборов, называемых дифманометрами. Дифманометры включаются в две точки одной системы и показывают перепад давления газообразных или жидких веществ.

Диапазоны измеряемых давлений стандартизированы и приняты равными определенному ряду значений, которые приведены в табл. 2.

Табл. 2. Стандартный ряд значений для градуировки шкал.

Тип прибора

Диапазоны измеряемых давлений, кгс/см 2

Вакуумметры

1…0

Мановакуумметры

1…0,6; 1,5; 3; 5; 9; 15; 24

Манометры

0…0,6; 1; 1,6; 2,5; 4; 6; 10; 16; 25; 40; 60; 100; 160; 250; 400; 600; 1000; 1600

0…2500; 4000; 6000; 10000

5. Класс точности манометров

Класс точности - допустимая погрешность прибора, выраженная в процентах от максимального значения шкалы данного прибора. Класс точности наносится производителями на шкалу. Чем меньше это значение, тем точнее прибор. Один и тот же тип манометра может иметь разный класс точности. Например, завод «Манотомь» в стандартном исполнении производит приборы с классом точности 1,5, а под заказ может изготовить аналогичные приборы с классом точности 1,0. В табл. 3 приведены данные по классам точности применительно к различным видам манометров.

Табл. 3. Класс точности манометров российских производителей.

Тип прибора

Класс точности

Манометры образцовые

0,15; 0,25; 0,4

Манометры точных измерений

0,4; 0,6; 1,0

Технические манометры

1,0; 1,5; 2,5; 4

Манометры сверхвысоких давлений

У приборов импортного производства значение класса точности может несколько отличаться от российских аналогов. Например, у европейских технических манометров класс точности может быть 1,6.

Чем меньше диаметр корпуса прибора, тем ниже его класс точности.

6. Диаметр корпуса

Чаще всего манометры изготавливаются в корпусах, имеющих следующие диаметры: 40, 50, 60, 63, 100, 150, 160, 250 мм. Но можно встретить приборы и с другими размерами корпуса. Например, виброустойчивые манометры производства «Физтех» типа ДМ8008-Вуф (ДА8008-Вуф, ДВ8008-Вуф) изготавливаются в корпусах диаметром 110 мм, а уменьшенный вариант этого прибора, ДМ8008-Вуф (ДА8008-Вуф, ДВ8008-Вуф) Исполнение 1, имеет диаметр 70 мм.

Манометры с корпусом в 250 мм часто называют котловыми. Они не имеют специальных исполнений и применяются на теплоэнергетических объектах и позволяют с рабочего места оператора контролировать давление на нескольких расположенных рядом установках.

7. Конструкция манометров

Для подключения манометра к системе используется штуцер. Различают радиальное (нижнее) расположение штуцера и осевое (тыльное). Осевой штуцер может быть с центральным расположением или со смещенным относительно центра. Многие типы манометров в силу конструктивных особенностей не имеют исполнения с осевым штуцером. Например, сигнализирующие (электроконтактные) манометры изготавливают только с радиальным штуцером, так как на тыльной стороне размещается электрический разъем.

Размер резьбы на штуцере зависит от диаметра корпуса. Манометры с диаметрами - 40, 50, 60, 63 мм изготавливаются с резьбой М10х1,0-6g, М12х1,5-8g, G1/8-B, R1/8, G1/4-В, R1/4. На манометрах большего размера применяется М20х1,5-8g или G1/2-В. Европейские нормы предусматривают применение не только указанных выше типов резьбы, но и конических - 1/8 NPT, 1/4 NPT, 1/2 NPT. Кроме того, в промышленности используются специфические присоединения. Манометры, измеряющие высокие и сверхвысокие давления, могут иметь внутреннюю коническую или цилиндрическую резьбу.

Конструкция корпуса манометра зависит от способа и места установки. Приборы, устанавливаемые открыто на магистралях, как правило, не имеют дополнительных креплений. При установке в шкафы, панели управления используются манометры с передним или задним фланцем. Можно выделить следующие исполнения манометров:

С радиальным штуцером без фланца;

С радиальным штуцером с задним фланцем;

С осевым штуцером с передним фланцем;

С осевым штуцером без фланца.

Манометры стандартного исполнения, как правило, имеют степень защиты IP40. Специальные манометры, в зависимости от области применения, могут изготавливаться со степенью защиту IP50, IP53, IP54 и IP65.

В ряде случаев, манометры должны пломбироваться с тем, чтобы исключить возможность несанкционированного вскрытия приборов. С этой целью некоторые производители изготавливают на корпусе проушину и комплектуют винтом с отверстием в головке, позволяющие установить пломбу.

8. Защита от высоких температур и перепадов давления

На погрешность измерений и ресурс манометров серьезное влияние оказывает температура. Этот фактор воздействует на внутренние элементы конструкции при контакте с измеряемой средой, а внешне через температуру окружающей среды.

Большинство манометров должно эксплуатироваться при температуре окружающей и измеряемой среды не более +60 о С, максимум +80 о С. Некоторые производители изготавливают приборы, рассчитанные на температуру измеряемой среды до +150 о С и даже +300 о С. Однако измерения при высоких температурах можно производить манометрами стандартного исполнения. Для этого манометр должен подключаться к системе через сифонный отвод (охладитель). Сифонный отвод - это трубка специальной формы. На концах отвода имеется резьба для подключения к магистрали и присоединения манометра. Сифонный отвод образует ответвление, в котором отсутствует циркуляция измеряемой среды. В результате в месте подключения манометра температура может в разы отличаться от температуры в основной магистрали.

Другим фактором, влияющим на долговечность манометров, являются резкие перепады давления или гидроудары. Для снижения влияния этих факторов используют демпферы. Демпфер может быть выполнен в виде отдельного устройства, устанавливаемого перед манометром или монтироваться во внутреннем канале держателя прибора.

Защитить манометр можно и другим способом. В случаях, когда нет необходимости постоянно контролировать давление в системе, манометр можно установить через кнопочный кран. Таким образом прибор будет подключаться к контролируемой магистрали лишь на время, в течение которого будет нажата кнопка крана.

Выбор шкалы манометра.

Необходимо знать:

1 Шкалы приборов по ГОСТу

2 Требования правил к манометрам (оптимальное показание манометра, если стрелка прибора при рабочем давлении находится во 2/3 шкалы).

Для решения задачи мы имеем формулу Ршк=3/2Рраб.

Например: Дано: Рраб=36кгс/см 2 . Определить Ршк?

Решение: Ршк = 3 36/2=54кгс/см 2 .

Выбираем ближайшую шкалу по ГОСТу в сторону увеличения. Это 60 кгс/см 2

Таким образом: Ршк=60

5. Непрямой массаж сердца.

Билет № 4

1. Основные свойства горных пород

Коллектором называется горная порода, обладающая такими геолого-физическими свойствами, которые обеспечивают физическую подвижность нефти или газа в её пустотном пространистве. Подавляющая часть нефтяных и газовых месторождений приурочена к коллекторам трёх типов – гранулярным, трещинным и смешанного строения. К первому типу относятся коллекторы, сложенные песчано-алевритовыми породами, поровое пространство которых состоит из межзерновых полостей. Подобным строением порового пространства характеризуются также некоторые пласты известняков и доломитов. В чисто трещиноватых коллекторах (сложенных преимущественно карбонатами) поровое пространство образуется системой трещин. При этом участки коллектора между трещинами представляют собой плотные малопроницаемые нетрещиноватые блоки пород, поровое пространство которых практически не участвует в процессах фильтрации. На практике, однако, чаще всего встречаются трещиноватые коллекторы смешанного типа, поровое пространство которых включает как системы трещин, так и поровое пространство блоков, а также каверны и карст.

Анализ показывает, что около 60% запасов нефти в мире приурочено к песчаным пластам и песчаникам, 39% – к карбонатным отложениям, 1% – к выветренным метаморфическим и изверженным породам. Следовательно, породы осадочного происхождения – основные коллекторы нефти и газа.

В связи с разнообразием условий формирования осадков коллекторские свойства пластов различных месторождений могут изменяться в широких пределах. Характерные особенности большинства коллекторов – слоистость их строения и изменение во всех направлениях свойств пород, толщины пластов и других параметров.

Нефтяной либо газовый пласт представляет собой горную породу, пропитанную нефтью, газом и водой.

Под горной породой понимается естественный твердый минеральный агрегат определенного состава и строения, образующий в земной коре тела различной формы и размера. Горные породы делятся на три группы: осадочные, изверженные (магматические) и метаморфические. Осадочные породы возникают в результате преобразования в термических условиях поверхностной части земной коры осадков, представляющих собой выпавшие механическим или химическим путем продукты разрушения более древних пород, изверженных вулканов, жизнедеятельности организмов и растений.

Свойства горной породы вмещать (обусловлено пористостью горной породы) и пропускать (обусловлено проницаемостью) через себя жидкости и газы называются фильтрационно-ёмкостными свойствами (ФЕС).

Фильтрационные и коллекторские свойства пород нефтяных пластов характеризуются следующими основными показателями:

· гранулометрическим составом пород

· пористостью;

· проницаемостью;

· насыщенностью пород водой, нефтью и газом;

· удельной поверхностью;

· капиллярными свойствами;

· механическими свойствами.

2. Назначение направления, кондуктора, технической и эксплуатационной колонн НКТ

В проекте строительства скважины разработка ее конструкции - очень ответственный раздел. От правильного учета характера нагружения, условий работы и износа колонн за период существования скважины зависит надежность конструкции. Вместе с тем выбранная конструкция предопределяет объем работ в скважине и расход материалов и поэтому существенным образом влияет на стоимостные показатели строительства и эксплуатации скважины.

Разработка конструкции скважины начинается с решения двух проблем: определения требуемого количества обсадных колонн и глубины спуска каждой из них; обоснования расчетным путем номинальных диаметров обсадных колонн и диаметров породоразрушающего инструмента.

Число обсадных колонн определяется на основании анализа геологического разреза в месте заложения скважины, наличия зон, где бурение сопряжено с большими осложнениями, анализа картины изменения коэффициентов аномальности пластового давления и индексов поглощения, а также накопленного практического опыта проводки скважин. Результаты изучения конкретной геологической обстановки позволяют сделать выводы о несовместимости условий бурения и на этом основании выделить отдельные интервалы, подлежащие изоляции. По имеющимся данным строят график изменения коэффициента аномальности пластового давления ka и индекса давления поглощения kп с глубиной и на нем выделяют интервалы, которые можно проходить с использованием раствора одной плотности.

Рис. 3.1. Обсадная труба в скважине Рис. 3.2. Схема крепления скважины

Глубину спуска каждой обсадной колонны уточняют с таким расчетом, чтобы ее нижний конец находился в интервале устойчивых монолитных слабопроницаемых пород и чтобы она полностью перекрывала интервалы слабых пород, в которых могут произойти гидроразрывы при вскрытии зон с аномально высоким пластовым давлением (АВПД) в нижележащем интервале.

Таким образом, в результате бурения ствола, его последующего крепления и разобщения пластов создается устойчивое подземное сооружение определенной конструкции.

Под конструкцией скважины понимается совокупность данных о числе и размерах (диаметр и длина) обсадных колонн, диаметрах ствола скважины под каждую колонну, интервалах цементирования, а также о способах и интервалах соединения скважины с продуктивным пластом.

Сведения о диаметрах, толщинах стенок и марках сталей обсадных труб по интервалам, о типах обсадных труб, оборудовании низа обсадной колонны входят в понятие конструкции обсадной колонны.

В скважину спускают обсадные колонны определенного назначения: направление, кондуктор, промежуточные колонны, эксплуатационная колонна.

Направление спускается в скважину для предупреждения размыва и обрушения горных пород вокруг устья при бурении под кондуктор, а также для соединения скважины с системой очистки бурового раствора. Кольцевое пространство за направлением заполняют по всей длине тампонажным раствором или бетоном. Направление спускают на глубину от нескольких метров в устойчивых породах, до десятков метров в болотах и илистых грунтах.

Кондуктором обычно перекрывают верхнюю часть геологического разреза, где имеются неустойчивые породы, пласты, поглощающие буровой раствор или проявляющие, подающие на поверхность пластовые флюиды, т.е. все те интервалы, которые будут осложнять процесс дальнейшего бурения и вызывать загрязнение окружающей природной среды. Кондуктором обязательно должны быть перекрыты все пласты, насыщенные пресной водой.


Рис. Схема конструкции скважины

Кондуктор служит также для установки противовыбросового устьевого оборудования и подвески последующих обсадных колонн. Кондуктор спускают на глубину нескольких сотен метров. Для надежного разобщения пластов, придания достаточной прочности и устойчивости кондуктор цементируется по всей длине.

Промежуточные (технические) колонны необходимо спускать, если невозможно пробурить до проектной глубины без предварительного разобщения зон осложнений (проявлений, обвалов). Решение об их спуске принимается после анализа соотношения давлений, возникающих при бурении в системе «скважина-пласт».

Эксплуатационная колонна спускается в скважину для извлечения нефти, газа или нагнетания в продуктивный горизонт воды или газа с целью поддержания пластового давления. Высота подъема тампонажного раствора над кровлей продуктивных горизонтов, а также устройством ступенчатого цементирования или узлом соединения верхних секций обсадных колонн в нефтяных и газовых скважинах должна составлять соответственно не менее 150-300 м и 500 м.

В отдельных случаях, когда имеющихся геологических сведений недостаточно для обоснования количества колонн и у проектировщиков имеются серьезные опасения, что в скважине могут возникнуть непредвиденные осложнения, в конструкции первых поисковых и поисково-разведочных скважин может быть предусмотрена резервная колонна.

Определив число обсадных колонн и глубину их спуска, приступают к согласованию расчетным путем нормализованных диаметров обсадных колонн и породоразрушающего инструмента. Исходным для расчета является либо диаметр эксплуатационной колонны, который устанавливают в зависимости от ожидаемого дебита скважины, либо конечный диаметр скважины, определяемый размером инструментов и приборов, которые будут использоваться в скважине.

По расчетному значению внутреннего диаметра в соответствии с размерами, указанными в ГОСТ 632, подбирают нормализованный диаметр обсадной колонны. Подобным образом повторяют расчет для каждой последующей колонны до самой верхней.

Если строительство скважины завершается без спуска обсадной колонны на конечную глубину, исходным является диаметр долота для конечного интервала.

3. Прием и сдача вахты оператором

4. Приборы для измерения давления, типы, класс точности, диапазон измерений.

V. АРМАТУРА, КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ, ПРЕДОХРАНИТЕЛЬНЫЕ УСТРОЙСТВА

5.1. Общие положения

5.1.1. Для управления работой и обеспечения безопасных условий эксплуатации сосуды в зависимости от назначения должны быть оснащены:

запорной или запорно-ре гулирующей арматурой;

приборами для измерения давления;

приборами для измерения температуры;

предохранительными устройствами;

указателями уровня жидкости.

5. 1. 2. Сосуды, снабженные б ыстросъемн ыми крышками, долж ны иметь предохранительные устройства, исключающие возможность включения сосуда под давление при неполном закрытии крышки и открывании ее при наличии в сосуде давления. Такие сосуд ы также должны быть оснащены замками с ключом-маркой.

5.2. Запорная и запорно-регулирующая арматура

5. 2.1. Запорная и запорно-ре гулирующая арматура должна устанавливаться на штуцерах, непосредственно присоединенных к сосуду, или на трубопроводах, подводящих к сосуду и отводящих из него рабочую среду. В случае последовательного соединения нескольких сосудов необходимость установки такой арматуры между ними определяется разработчиком проекта.

5. 2. 2. Арматура должна иметь следующую маркировку:

наименование или товарный знак изготовителя;

условный проход, мм;

условное давление, М Па (допускается указывать рабочее давление и допустимую температуру);

направление потока среды;

марку материала корпуса.

5. 2. 3. Количество, тип арматуры и места установки должны выбираться разработчиком проекта сосуда исходя из конкретных условий эксплуатации и требований Правил.

5. 2. 4. На маховике запорной арматуры должно быть указано направление его вращения при открывании или закрывании арматуры.

5. 2. 5. Сосуды для взрывоопасных, пожароопасных веществ, веществ 1-го и 2-го классов опасности по ГОСТ 12.1.007-76 , а также испарители с огневым или газовым обогревом должны иметь на подводящей линии от насоса или компрессора обратный клапан, автоматически закрывающийся давлением из сосуда. Обратный клапан должен устанавливаться между насосом (компрессором) и запорной арматурой сосуда.

5. 2. 6. Арматура с условным проходом более 20 мм, изготовленная из легированной стали или цветных металлов, должна иметь паспорт установленной формы, в котором должны быть указаны данные по химсоставу, механическим свойствам, режимам термообработки и результатам контроля качества изготовления неразрушающими методами.

Арматуру, имеющую маркировку, но не имеющую паспорта, допускается применять после проведения ревизии арматуры, испытания и проверки марки материала. При этом владельцем арматуры должен быть составлен паспорт.

5.3. Манометры

5. 3.1. Каждый сосуд и самостоятельные полости с разными давлениями должны быть снабжены манометрами прямого дейст вия. Манометр устанавливается на штуцере сосуда или трубопроводе между сосудом и запорной арматурой.

5. 3. 2. Манометры должны иметь класс точности не ниже: 2, 5 - при рабочем давлении сосуда до 2, 5 МПа (25 кгс/см 2 ), 1, 5 - при рабочем давлении сосуда выше 2, 5 МПа (25 кгс/см 2).

5. 3. 3. Манометр должен выбираться с такой шкалой, чтобы предел измерения рабочего давления находился во второй трети шкалы.

5. 3. 4. На шкале манометра владельцем сосуда должна быть нанесена красная черта, указывающая рабочее давление в сосуде. Взамен красной черты разрешается прикреплять к корпусу манометра металлическую пластину, окрашенную в красный цвет и плотно прилегающую к стеклу манометра.

5. 3. 5. Манометр должен быть установлен так, чтобы его показания были отчетливо видны обслуживающему персоналу.

5. 3. 6. Номинальный диаметр корпуса манометров, устанавливаемых на высоте до 2 м от уровня площадки наблюдения за ними, должен быть не менее 100 мм, на высоте от 2 до 3 м - не менее 160 мм.

Установка манометров на высоте более 3 м от уровня площадки не разрешается.

5. 3. 7. Между манометром и сосудом должен быть установлен трехходовой кран или заменяющее его устройство, позволяющее проводить периодическую проверку манометра с помощью контрольного.

В необходимых случаях манометр в зависимости от условий работы и свойств среды, находящейся в сосуде, должен снабжаться или сифонной трубкой, или масляным буфером, или другими устройствами, предохраняющими его от непосредственного воздейст вия среды и температуры и обеспечивающими его надежную работу.

5. 3. 8. На сосудах, работающих под давлением выше 2, 5 МПа (25 кгс/см 2) или при температуре среды выше 250 °С, а также со взрывоопасной средой или вредными веществами 1-го и 2-го классов опасности по ГОСТ 12.1.007-76 вместо трехходового крана допу скается установка отдельного ш туцера с запорным органом для подсоединения второго манометра.

На стационарных сосудах при наличии возможности проверки манометра в установленные Правилами сроки путем снятия его с сосуда установка трехходового крана или заменяющего его устройства необязательна.

На передвижных сосудах необходимость установки трехход ового крана определяется разработчиком проекта сосуда.

5. 3. 9. Манометры и соединяющие их с сосудом трубопроводы должны быть защищены от замерзания.

5. 3.10. Манометр не допускается к применению в случаях, когда:

отсутствует пломба или клеймо с отметкой о проведении поверки;

просрочен срок поверки;

стрелка при его отключении не возвращается к нулевому показанию шкалы на величину, превышающую половину допускаемой погрешности для данного прибора;

разбито стекло или имеются повреждения, которые могут отразиться на правильности его показаний.

5. 3. 11. Поверка манометров с их опломбированием или клеймением должна производиться не реже одного раза в 12 месяцев. Кроме того, не реже одного раза в 6 месяцев владельцем сосуда должна производиться дополнительная проверка рабочих манометров контрольным манометром с записью результатов в журнал контрольных проверок. При отсутствии контрольного манометра допускается дополнительную проверку производить проверенным рабочим манометром, имеющим с проверяемым манометром одинаковую шкалу и класс точности.

Порядок и сроки проверки исправности манометров обслуживающим персоналом в процессе эксплуатации сосудов должны определяться инструкцией по режиму работы и безопасному обслуживанию сосудов, утвержденной руководством организации - владельца сосуда.

5.4. Приборы для измерения температуры

5. 4. 1. Сосуды, работающие при изменяющейся температуре стенок, должны быть снабжены приборами для контроля скорости и равномерности прогрева по длине и высоте сосуда и реперами для контроля тепловых перемещений.

Необходимость оснащения сосудов указанными приборами и репер ами, а также допустимая скорость прогрева и охлаждения со судов определяются разработчиком проекта и указываются изготовителем в паспорте сосуда или в руководстве по эксплуатации.

5.5. Предохранительные устройства от повышения давления

5. 5.1. Каждый сосуд (полость комбинированного сосуда) должен быть снабжен предохранительными устройствами от повышения давления выше допустимого значения.

5. 5. 2. В качестве предохранительных устройств применяются:

пружинные предохранительные клапаны;

р ычажно- гр узов ые предохранительные клапаны;

импульсные предохранительные устройства (И ПУ), состоящие из главного предохранительного клапана (ГПК) и управляющего импульсного клапана (ИПК) прямого действия;

предохранительные устройства с разрушающимися мембранами (мембранные предохранительные устройства - МПУ);

другие устройства , применение которых согласовано с Госгортехна дзором России.

Установка р ычажно- гр узов ых клапанов на передвижных сосудах не допускается.

5. 5. 3. Конструкция пружинного клапана должна исключать возможность затяжки пружины сверх установленной величины, а пружина должна быть защищена от недопустимого нагрева (охлаждения) и непосредственного воздействия рабочей среды, если она оказывает вредное действие на материал пружины.

5. 5. 4. Конструкция пружинного клапана должна предусматривать устройство для проверки исправности действия клапана в рабочем состоянии путем принудительного открывания его во время работы.

Допускается установка предохранительных клапанов без при способления для принудительного открывания, если последнее нежела тельно по свойствам среды (взрывоопасная, горючая, 1-го и 2-го классов опасности по ГОСТ 12.1.007-76) или по условиям техно логического процесса. В этом случае проверка срабатывания клапанов должна осуществляться на стендах.

5. 5. 5. Если рабочее давление сосуда равно или больше давления питающего источника и в сосуде исключена возможность повышения давления от химической реакции или обогрева, то установка на нем предохранительного клапана и манометра необязательна.

5.5.6. Сосуд, рассчитанный на давление меньше давления питающего его источника, должен иметь на подводящем трубопроводе автоматическое редуцирующее устройство с манометром и предохранительным устройством, установленными на стороне меньшего давления после редуцирующего устройства.

В случае установки обводной линии (байпаса) она также должна быть оснащена редуцирующим устройством.

5. 5. 7. Для группы сосудов, работающих при одном и том же давлении, допускается установка одного редуцирующего устройства с манометром и предохранительным клапаном на общем подводящем трубопроводе до первого ответвления к одному из сосудов.

В этом случае установка предохранительных устройств на самих сосудах необязательна, если в них исключена возможность повышения давления.

5. 5. 8. В случае, когда автоматическое редуцирующее устройство вследствие физических свойств рабочей среды не может надежно работать, допускается установка регулятора расхода. При этом должна предусматриваться защита от повышения давления.

5.5.9. Количество предохранительных клапанов, их размеры и пропускная способность должны быть выбраны по расчету так, чтобы в сосуде не создавалось давление, превышающее расчетное более чем на 0,05 МПа (0,5 кгс/см2) для сосудов с давлением до 0,3 МПа (3 кгс/см2), на 15 % - для сосудов с давлением от 0,3 до 6,0 МПа (от 3 до 60 кгс/см2) и на 10 % - для сосудов с давлением свыше 6,0 МПа (60 кгс/см2).

При работающих предохранительных клапанах допускается превышение давления в сосуде не более чем на 25 % рабочего при условии, что это превышение предусмотрено проектом и отражено в паспорте сосуда.

5. 5. 10. Пропускная способность предохранительного клапана определяется в соответствии с НД.

5. 5. 11. Предохранительное устройство изготовителем должно поставляться с паспортом и инструкцией по эксплуатации.

В паспорте наряду с другими сведениями должен быть указан коэ фф ициент расхода клапана для сжимаемых и несжимаемых сред, а также площадь, к которой он отнесен.

5. 5. 12. Предохранительные устройства должны устанавливаться на патрубках или трубопроводах, непосредственно присоединенных к сосуду.

Присоединительные трубопроводы предохранительных устройств (подводящие, отводящие и дренажные) должны быть защищены от замерзания в них рабочей среды.

При установке на одном патрубке (трубопроводе) нескольких предохранительных устройств площадь поперечного сечения патрубка (трубопровода) должна быть не менее 1, 25 суммарной площади сечения клапанов, установленных на нем.

При определении сечения присоединительных трубопроводов длиной более 1000 мм необходимо также учитывать величину их сопротивлений.

Отбор рабочей среды из патрубков (и на участках присоединительных трубопроводов от сосуда до клапанов), на которых установлены предохранительные устройства, не допускается.

5. 5. 13. Предохранительные устройства должны быть размещены в местах, доступных для их обслуживания.

5. 5. 14. Установка запорной арматуры между сосудом и предохранительным устройством, а также за ним не допускается.

5. 5.15. Арматура перед (за) предохранительным устройством может быть установлена при условии монтажа двух предохранительных устройств и блокировки, исключающей возможность одновременного их отключения. В этом случае каждый из них должен иметь пропускную способность, предусмотренную п. 5.5.9 Правил.

При установке группы предохранительных устройств и арма туры перед (за) ними блокировка должна быть выполнена таким образом, чтобы при любом предусмотренном проектом варианте отключения клапанов остающиеся включенными предохранительные устройства имели суммарную пропускную способность, предусмотренную п. 5.5.9 Правил.

5. 5. 16. Отводящие трубопроводы предохранительных устройств и импульсные линии И ПУ в местах возможного скопления ко нденсата должны быть оборудованы дренажными устройствами дл я удаления конденсата.

Установка запорных органов или другой арматуры на дренажн ых трубопроводах не допускается. Среда, выходящая из предохранительных устройств и дренажей, должна отводиться в безопасное место.

Сбрасываемые токсичные, взр ыво- и пожароопасные технологические среды должны направляться в закрытые системы для дальнейшей утилизации или в системы организованного сжигания.

Запрещается объединять сбросы, содержащие вещества, которые способны при смешивании образовывать взрывоопасные смеси или нестабильные соединения.

5. 5.17. Мембранные предохранительные устройства устанавливаются:

вместо р ычажно-грузов ых и пружинных предохранительных клапанов, когда эти клапаны в рабочих условиях конкретной среды не могут быть применены вследствие их инерционности или других причин;

перед предохранительными клапанами в случаях, когда предохранительные клапаны не могут надежно работать вследствие вредного воздействия рабочей среды (коррозия, эрозия, полимеризация, кристаллизация, прикипание, примерзание) или возможных утечек через закрытый клапан взрыво- и пожароопасных, токсичных, экологически вредных и т.п. веществ. В этом случае должно быть предусмотрено устройство, позволяющее контролировать исправность мембраны;

параллельно с предохранительными клапанами для увеличения пропускной способности систем сброса давления;

на выходной стороне предохранительных клапанов для предотвращения вредного воздействия рабочих сред со стороны сбросной системы и для исключения влияния колебаний противодавления со стороны этой системы на точность срабатывания предохранительных клапанов.

Необходимость и место установки мембранных предохранительных устройств и их конструкцию определяет проектная организация.

5. 5.18. Предохранительные мембраны должны быть маркированы, при этом маркировка не должна оказывать влияния на точность срабатывания мембран.

наименование (обозначение) или товарный знак изготовителя;

номер партии мембран;

тип мембран;

условный диаметр;

рабочий диаметр;

материал;

20 °С.

Маркировка должна наноситься по краевому кольцевому участку мембран либо мембраны должны быть снабжены прикрепленными к ним маркировочными хвостовиками (этикетками).

5. 5.19. На каждую партию мембран должен быть паспорт, оформленный изготовителем.

наименование и адрес изготовителя;

номер партии мембран;

тип мембран;

условный диаметр;

рабочий диаметр;

материал;

минимальное и максимальное давление срабатывания мембран в партии при заданной температуре и при температуре 20 °С;

количество мембран в партии;

наименование нормативного документа, в соответствии с которым изготовлены мембраны;

наименование организации, по техническому заданию (заказу) которой изготовлены мембраны;

гарантийные обязательства организации-изготовителя;

порядок допуска мембран к эксплуатации;

образец журнала эксплуатации мембран.

Паспорт должен быть подписан руководителем организации-изготовителя, подпись которого скрепляется печатью.

К паспорту должна бы ть приложена техническая документация на противова куумн ые опоры, зажимающие и другие элементы, в сборе с которыми допускаются к эксплуатации мембраны данной пар тии. Техническая документация не прилагается в тех случаях, когда мембраны изготовлены применительно к уже имеющимся у потребителя узлам крепления.

5.5. 20. Предохранительные мембраны должны устанавливаться только в предназначенные для них узлы крепления.

Работы по сборке, монтажу и эксплуатации мембран дол жны выполняться специально обученным персоналом.

5. 5. 21. Предохранительные мембраны зарубежного производства, изготовленные организациями, не подконтрольными Госгортехнадзору России, могут быть допущены к эксплуатации лишь при наличии специальных разрешений на применение таких мембран, выдаваемых Госгортехнадзором России в установленном им порядке.

5. 5. 22. Мембранные предохранительные устройства должны размещаться в местах, открытых и доступных для осмотра и монтажа-демонтажа, присоединительные трубопроводы должны быть защищены от замерзания в них рабочей среды, а устройства должн ы устанавливаться на патрубках или трубопроводах, непосредственно присоединенных к сосуду.

5. 5. 23. При установке мембранного предохранительного ус тройства последовательно с предохранительным клапаном (перед клапаном или за ним) полость между мембраной и клапаном должна сообщаться отводной трубкой с сигнальным манометром (дл я контроля исправности мембран).

5. 5. 24. Допускается установка переключающего устройства перед мембранными предохранительными устройствами при наличии удвоенного числа мембранных устройств с обеспечением при этом защиты сосуда от превышения давления при любом положении переключающего устройства.

5. 5. 25. Порядок и сроки проверки исправности действия предохранительных устройств в зависимости от условий технологического процесса должны быть указаны в инструкции по эксплуатации предохранительных устройств, утвержденной владельцем сосуда в установленном порядке.

Результаты проверки исправности предохранительных устройств, сведения об их настройке записываются в сменный журнал работы сосудов лицами, выполняющими указанные операции.

5.6. Указатели уровня жидкости

5. 6.1. При необходимости контроля уровня жидкости в сосудах, имеющих границу раздела сред, должны применяться указатели уровня.

Кроме указателей уровня на сосудах могут устанавливаться з вуковые, световые и другие сигнализаторы и блокировки по уровню.

5.6. 2. Указатели уровня жидкости должны устанавливаться в соответствии с инструкцией изготовителя, при этом должна быть обеспечена хорошая видимость этого уровня.

5. 6. 3. На сосудах, обогреваемых пламенем или горячими газами, у которых возможно понижение уровня жидкости ниже допустимого, должно быть установлено не менее двух указателей уровня прямого действия.

5. 6. 4. Конструкция, количество и места установки указателей уровня определяются разработчиком проекта сосуда.

5. 6. 5. На каждом указателе уровня жидкости должны быть отмечены допустимые верхний и нижний уровни.

5. 6. 6. Верхний и нижний допустимые уровни жидкости в сосуде устанавливаются разработчиком проекта. Высота прозрачного указателя уровня жидкости должна быть не менее чем на 25 мм соответственно ниже нижнего и выше верхнего допустимых уровней жидкости.

При необходимости установки нескольких указателей по высоте их следует размещать так, чтобы они обеспечили непрерывность показаний уровня жидкости.

5. 6. 7. Указатели уровня должны быть снабжены арматурой (кранами и вентилями) для их отключения от сосуда и продувки с отводом рабочей среды в безопасное место.

5. 6. 8. При применении в указателях уровня в качестве прозрачного элемента стекла или слюды для предохранения персонала от травмирования при разрыве их должно быть предусмотрено защитное устройство.



Похожие статьи