Мостовой качер на мосфет транзисторах. Качер бровина от а до я

Инфракрасный датчик расстояния Sharp GP2Y0A является популярным выбором для различных проектов на базе Arduino, которым требуется точное измерение расстояния.

В датчиках Sharp установлен инфракрасный (IR) светодиод (LED) с линзой, который излучает узкий световой луч. Отраженный от объекта луч направляется через другую линзу на позиционно-чувствительный фотоэлемент (Position-Sensitive Detector, PSD). От местоположения падающего на PSD луча зависит его проводимость. Проводимость преобразуется в напряжение и, к примеру, оцифровывая его аналого-цифровым преобразователем микроконтроллера, можно вычислить расстояние.

Выход инфракрасного датчика расстояния Sharp обратно пропорциональный - с увеличением расстояния его значение медленно уменьшается. Вид графика зависимости между расстоянием и напряжением.

Датчики, в зависимости от их типа, имеют границы измерения, в пределах которых их выход может быть признан надежным. Измерение максимального реального расстояния ограничивают два фактора: уменьшение интенсивности отраженного света и невозможность PSD регистрировать незначительные изменения местоположения отображенного луча. В целом график зависимости между расстоянием и напряжением не является линейным, однако в пределах допустимых расстояний график обратной величины выходного напряжения и расстояния к линейности приближается достаточно близко, и с его помощью довольно просто получить формулу для преобразования напряжения в расстояние. Для нахождения такой формулы необходимо точки этого графика ввести в какую-либо программу обработки табличных данных и из них создать новый график. В программе обработки табличных данных на основе точек графика возможно автоматически вычислить линию тренда. Например, для датчика GP2Y0A021YK0F:


Технические характеристики инфракрасного дальномера Sharp

Рабочее напряжение: 4,5 - 5,5 В; Максимальный потребляемый ток: 40 мА (типичный - 30 мА); Тип выходного сигнала: аналоговый; Дифференциальное напряжение, большее диапазона распознавания расстояния: 2,0 В; Время отклика: 38 ± 10 мс Диапазон работы: Датчик GP2Y0A41SK0F: 4 - 30 см; Датчик GP2Y0A021YK0F: 10 см - 80 см; Датчик GP2Y0A02YK0F: 20 см - 150 см;

Пример использования

Создадим пример подсчета посетителей магазина. Упростим задачу, предполагая, что вход осуществляется через неширокую дверь, и для входа и выхода разные двери. На входе ставим инфракрасный дальномер Sharp GP2Y0A21YK0F (20-150 cм) таким образом, чтобы при прохождении человека показания имели значения 10 – 50 см, при отсутствии людей 80 см. При обнаружении посетителя увеличиваем счетчик подсчета посетителей. Данные выводим на графический дисплей Nokia 5110. Для отображения информации с датчиков будем использовать ЖК-дисплей Nokia 5110. Это графический монохромный дисплей с разрешением 84×48 точек. Дисплей Nokia 5110 поставляется на плате в паре с контроллером PCD8544 и штыревым разъемом. Электропотребление дисплея позволяет питать его от выхода +3.3 В платы Arduino.

Для проекта нам понадобятся следующие детали:
плата Arduino Uno
макетная плата (Breadboard Half)
инфракрасный датчик расстояния sharp GP2Y0A21YK0F
дисплей Nokia 5110
соединительные провода
Соберем схему, показанную на рисунке.

Запустим Arduino IDE. Создадим новый скетч и внесем в него следующее содержимое: //Инфракрасный датчик расстояния //сайт // подключение библиотек для работы с дисплеем Nokia #include #include // Nokia 5110 // pin 3 - Serial clock out (SCLK) // pin 4 - Serial data out (DIN) // pin 5 - Data/Command select (D/C) // pin 6 - LCD chip select (CS) // pin 7 - LCD reset (RST) Adafruit_PCD8544 display = Adafruit_PCD8544(3, 4, 5, 6, 7); // аналоговый пин для подключения выхода Vo сенсора const int IRpin = A0; // переменные int value1; // для хранения аналогового значения unsigned long timevisitors; // время прохождения int count_visitors=0; // переменная подсчета посетителей void setup() { // запуск последовательного порта Serial.begin(9600); Serial.println("start"); // инициализация дисплея display.begin(); // установить контраст фона экрана display.setContrast(60); display.clearDisplay(); // очистить экран display.setTextSize(1); // размер шрифта display.setTextColor(BLACK); // цвет // заставка display.setCursor(5,15); display.print("Visitors: 0"); display.display(); delay(2000); } void loop() { // получаем сглаженное значение и переводим в напряжение value1=irRead(); if(value1>50) // фиксация прохождения { timevisitors=millis(); while(irRead()>50) ; if(millis()-timevisitors>300) // > минимального времени прохождения { Serial.println("passage!!!"); count_visitors=count_visitors+1; // увеличение счетчика // вывод в монитор последовательного порта Serial.print("count_visitors="); Serial.println(count_visitors); // вывод на дисплей display.clearDisplay(); display.setCursor(5,15); display.print("Visitors: "); display.print(count_visitors); display.display(); } } delay(200); } // Усреднение нескольких значений для сглаживания int irRead() { int averaging = 0; // переменная для суммирования данных // Получение 5 значений for (int i=0; i<5; i++) { value1 = analogRead(IRpin); // значение сенсора переводим в напряжение float volts = analogRead(IRpin)*0.0048828125; // и в расстояние в см int distance=32*pow(volts,-1.10); averaging = averaging + distance; delay(55); // Ожидание 55 ms перед каждым чтением } value1 = averaging / 5; // усреднить значения return(value1); } Работать с сенсорами SHARP очень просто - достаточно подключить к нему питание и завести вывод Vo на аналоговый вход Arduino. Значение получаемой функции analogRead представляет собой целое число от 0 до 1023. Таким образом, чтобы узнать напряжение на выходе сенсора, необходимо значение на аналоговом входе Arduino умножить на 0,0048828125 (5 В / 1024). Расстояние вычисляем по формуле distance=volts*0.0001831-0.003097. При чтении данных, при каждой итерации цикла, иногда приходят разные значения сигнала при одном и том же расстоянии. Датчик передает сигнал на аналоговый порт с некоторой амплитудой и иногда в момент считывания данных значение оказывалось отличным от нормального, потому что итерация приходится на провал. Для сглаживания значений, получаемых с дальномера используем функцию irRead(). Датчик обнаруживает попадание объекта в дверной проем. Далее ожидаем окончания прохода. Если это время больше минимального времени прохода (отсечение взмаха руки, пролет предмета и пр.) инкрементируем счетчик посетителей и выводим данные в последовательный порт и на дисплей. Для работы с дисплеем Nokia 5110 нам понадобятся Arduino библиотеки Adafruit_GFX и Adafruit_PCD8544.

Часто задаваемые вопросы FAQ

1. На дисплей не выводится информация
  • Проверьте правильность соединения всех проводов, согласно схеме на рисунке 5.
2. Не срабатывает датчик расстояния
  • Проверьте подсоединение модуля sharp;
  • Проверьте срабатывание обнаружения датчиком в мониторе последовательного порта.

Здравствуйте, дорогие читатели и гости сайта!

Сегодня мы с вами поговорим о качере Бровина. Это интересное устройство изобрел в 1987 году советский инженер Владимир Ильич Бровин. Качер был частью электромагнитного компаса, но сегодня его собирают чаще всего из интереса. На качер Бровина схема не слишком сложная, а визуальные эффекты с его помощью можно получить самые интересные.

Качер – это качатель реактивностей, чем данное устройство и занимается. По легенде он выдает больше энергии, чем потребляет, что весьма сомнительно, но не так уж сложно проверить. Одно из самых интересных качеств качера в том, что на качер Бровина схема предельно проста и доступна даже новичкам. Его можно собрать на или , но подойдут для этого и радиолампы – и пентоды, и триоды.

«Таинственные» свойства, которые демонстрирует качер Бровина, восходят к знаменитым исследованиям Николы Теслы. Ни в одну из современных теорий электромагнетизма они до конца не вписываются, и именно этим мощный качер Бровина меня заинтересовал. По сути качер Бровина представляет собой некий полупроводниковый разрядник, разряд в котором проходит через кристаллическую основу трансформатора, пропуская стадию появления электрической дуги. А самым любопытным является то, что после пробоя кристалл приходит в норму.

Дело в том, что в таких устройствах происходит не тепловой, а лавинный пробой. Но тут стоит отметить, что детальные исследования качера проводил только сам инженер Бровин. После него такое устройство неоднократно собирали любители, но принципы его работы не исследовались. К примеру, для подтверждения статуса качера Бровин рекомендует подключить к нему осциллограф. Какой полярностью бы он ни был подключен, импульсы всегда будут демонстрировать положительную полярность. Пока практического применения качер Бровина схема не нашла, серьезным исследованиям он не подвергается. А любители могут исследовать только самые простые проявления работы качера, чем мы далее и займемся.

Подробно останавливаться на схеме устройства я не стану, потому как она является общеизвестной и общедоступной. Отмечу только что качер состоит из трех главных частей: собственно, самого качера, блока питания и прерывателя. Прерыватель, или блок управления, используют, чтобы регулировать частоту и скважность издаваемых качером импульсов. Они поступают транзистор, который открывает и закрывает переход между током-истоком в соответствии с тактом импульсов. При открытии ток протекает и замыкает цепь качера на блок питания – это и создает импульс. За тот небольшой промежуток времени, в который происходит открытие, искра пробегает на терминале.

Если описать в двух словах, то можно сказать, что когда ток проходит в два направления на транзистор и прерыватель, на блоке питания появляется напряжение. Включается прерыватель, подает импульс на затвор транзистора, затвор открывает переход, ток проходит через качер и замыкает цепь.

Итак, что нам понадобится, чтобы собрать мощный качер Бровина?

  1. Руки — подойдут даже самые неопытные или кривые.
  2. Провод с сечением 0,25 мм – можно использовать проволоку из трансформатора.
  3. Биполярный транзистор п-р-п (кт805АМ, кт808 ,кт805Б, КТ902А и другие похожие транзисторы, которые можно достать практически из любой советской электроники.)
  4. Пара резисторов.
  5. Конденсатор большой емкости (1000 -10000 мкф)
  6. Источник питания постоянного напряжения (от 12 до 30 вольт с силой тока не менее 1-1,5 ампер.)

Это так называемый стандартный набор, если у вас не найдется какого-либо элемента, всегда есть возможность подобрать для него замену.

Например, прерыватель можно поменять на любой генератор, который издает прямоугольные импульсы. Изменение любых номиналов элемента схемы на десять-тридцать процентов не помешает схеме работать. Конечно, следует помнить, что работать с другими показателями качер Бровина схема будет несколько иначе. Частоту генератора я советую выбирать в пределах 150 герц.

Подключается качер Бровина к обычной сети на 220 вольт. В целях защиты советую установить пятиамперный предохранитель. Для питания качеру понадобится 310 вольт, то есть получаемые из розетки 220 нужно будет выпрямить. Для этого можно взять диодный мост с показателями не меньше десятки ампер и пятисот вольт. Прерывателю понадобится другой диодный мост – на 50 вольт и один ампер. Кроме того, его необходимо шунтировать конденсатором.

Сам качер Бровина может иметь отклонения показателей деталей 20 процентов от номинальных. Полевой транзитор можно заменить другим, но в этом случае я советую вам брать на аналогичный, а более мощный. Конденсатор контура понадобиться настраиваться самостоятельно, оптимальный уровень настройки – от половину до одного микрофарада.

Что касается катушки, то для обмоток понадобятся два провода. Для первичной используется провод на два квадрата, но витков у обмотки будет совсем немного. Вторичную обмотку можно сделать ПЛШО или любым другим похожим проводом. Главное – получить необходимое количество витков. Кто-то советует делать всего 500 оборотов, кто-то утверждает, что требуется не менее полутора тысяч, если не все две. Мы остановимся на среднем показателе в районе тысячи витков. Для обмотки можно использовать клей, лак или эпоксидную смолу, чтобы она не развалилась, если вы намотаете недостаточно крепко. В любом случае, сбившаяся омотка может сильно вам помешать.

Дроссель берем с сопротивлением от пятнадцати до сорока ом. Снять такой можно с ламп ЛДС. Если найти именно такой дроссель не вышло, можно поменять его на резистор, сопротивление которого находится в тех же пределах, а мощность превышает тысячу ватт.

Теперь начинаем собирать качер Бровина. Сначала нужно сделать первичную катушку. Для этого берем любую трубку с диаметром 4-7 сантиметров и используем медный провод большого сечения или медную трубку. Делаем четыре витка, не слишком плотно, так как трубку после этого нужно будет достать. Теперь извлекаем трубку и растягиваем провод таким образом, чтобы высота обмотки составила десят­ь­­–пятнадцать сантиметров.

Вторичная катушка должна быть в три раза выше. Для нее берем тонкий обмоточный провод и наматываем на пластиковую трубку примерно 1000 оборотов. Я делал это вручную, поэтому создание катушки заняло немного времени. Если вы хоть раз этим занимались, вы знаете, какой это утомительный процесс. Можно несколько ускорить работу, воспользовавшись электрическим шуруповертом. Но в этом случае очень важно рассчитать количество его оборотом в минуту и время создания обмотки, чтобы сделать нужное количество витков. Катушка готова. Чтобы она не сбилась, можно нанести местами клей – он удержит ее на месте и позволит работать без запредельной осторожности. Вокруг нижней части вторичной катушки устанавливаем первичную.

Остальные элементы собираем по схеме. Трубку нужно закрепить вертикально, поэтому ее нижнюю часть лучше всего приклеить к основе. Можно взять для этого ненужный диск, но я выбрал деревянную дощечку – более удобный вариант. Теперь проверяем схему. Если что-то не работает, для начала попробуйте поменять местами контакты первичной катушки, кроме того важное значение имеет направление первичной и вторичной обмотки — они должны быть накручены в одну сторону. Если это не помогло – проверьте транзистор. Он может быть неисправен. Так же проверьте проводимость катушек — может быть где-то нет контакта.

Еще советую не боятся меня положение и количество витков толстого провода — он должен распологаться у основания катушки, о у меня он почти в середине. Меняйте его положение пока эффект не появится. Это должно помочь, других проблем возникнуть на такой простой схеме не должно.

Теперь переходим к настройке собранного качера. Для этого регулируем подстроечный резистор R1. На транзисторы я установил радиаторы – они сильно нагреваются, поэтому лучше обезопасить устройство от неожиданностей.

Этот вариант сборки не единственный. Можем попробовать и другой качер Бровина, разработанный самим инженером или его последователями.

В таких схемах используется две или три катушки и самые разные транзисторы. Мне показался интересным вариант качера с трехцветным светодиодом, тремя катушками и кнопкой запуска. Питание качер Бровина схема получается от пальчиковых батареекна 1,2 вольта. Диаметр катушек по 5 сантиметров. Для первой и третей катушек делаем по 60 витков, а для второй – 30. Это не так много, поэтому нетрудно сделать катушки вручную. Транзистор можно взять Кт315, 9014, S9013 или 9018.

В этой схеме важно продумать расположение катушек. Лучше всего светодиод горит, если расположить вторую и третью катушку рядом друг с другом. Но и при приближении третей катушки к первой свечение становится сильнее. Если все три катушки поставить рядом, то свечение будет сильнее всего, но в этом случае вам придется потрудиться, чтобы найти правильное положение первой катушки – она должна быть повернута определенной стороной. В этом варианте свечение появляется только на красном и зеленом кристаллах светодиода. После замены первой катушки дросселем светиться начал и синий кристалл.

Здесь не лишним будет упомянуть несколько важных правил (надеюсь, вы еще не начали собирать):

  1. Разряды руками трогать нельзя. Если вы решите это сделать, будет не так уж больно, но вы можете получить довольно сильный ожог.
  2. Позаботьтесь о том, чтобы при проведении опытов в комнате не было домашних животных.
  3. Мобильные телефоны, компьютеры и прочую электронику лучше убрать подальше. Электромагнитный импульс может их серьезно испортить.
  4. Долгое время экспериментировать не рекомендуется.

Теперь можем проверить качер в работе. Эффекты качер Бровина создает довольно красивые. Все дело в том, что по принципу действия качер представляет собой простейший высокочастотный генератор, работающий на одном транзисторе. Обратная связь в нем осуществляется влючением перехода эмиттер-база последовательно в . Этим контуром и является собранная нами ранее катушка индуктивности. Она резонирует по частоте, которая определяется количеством витков и межвитковыми емкостями. Диапазон частоты генерации довольно большой – от 3 до 100 Мгц.

Разряды мощный качер Бровина выдает следующие:

  • Стример – это разветвленные каналы с тусклым свечение, они содержат свободные электроны и ионизированные атомы газа. Это видимая ионизация воздуха, которую создает ВВ поле качера.
  • Дуговой разряд – появляется в случае достаточно высок мощности трансформатора, если к его терминалу приблизить заземленный предмет. Между этим предметом и терминалом может появиться дуга. Если прикоснуться этим предметом к терминалу и медленно отводить его дуга будет растягиваться. Однако, тут я советую быть предельно аккуратным, лучше обойтись опытами со стримерами.

Чтобы получить эффект «ионного двигателя», нужно запустить качер Бровина на минимальном напряжении – четыре вольта. Затем плавно начинаем повышать напряжение, при этом не забудьте о том, что нужно контролировать ток. Я собирал схему на транзисторе КТ902А, стример появился уже при напряжении в 4 вольта. Повышая напряжение, мы видим, что стример становится больше. Догоняем до 16 вольт и получаем такого вот «пушистика». При 18 вольтах размер стримеров достигает примерно 17 миллиметров, а на 20 наблюдаем эффект ионного двигателя в работе, чего мы сейчас и планировали достичь.

Итак, что же еще можно сделать, используя собранный качер Бровина?

Чего не стоит делать, так это подносить к нему фотоаппараты, телефоны или другие гаджеты. Вокруг качера мощное электромагнитное поле, поэтому любая электроника, попадая в него, может сгореть. Если хотите в этом убедиться, самый простой способ – внести в поле лампочку. Лучше всего взять энергосберегающую лампу. Она начинает светиться не хуже, чем если бы была воткнута в розетку. Если у вас дома найдется лампа дневного света, можно внести в поле и ее – эффект будет примерно таким же. Если взять обычную лампу накаливая, светиться она будет не так, как обычно. Свечение появляется цветное – больше всего оранжевого и фиолетового. Похоже на магический шар, который вы наверняка видели в магазинах подарков или сувенирных лавках. Если у вас найдется кварцевый резонатор, можно увидеть довольно интересный эффект свечения.

Практическое применение такому устройству, как мощный качер Бровина, найти сложно. По сути, я собирал качер исключительно в качестве эксперимента. Этой же причиной обычно руководствуются и другие энтузиасты. Возможно, именно вы найдете собранному качеру какое-то более полезное применение. Если у вас это получится, обязательно поделитесь с нами своим вариантом сборки и тем, какую пользу можно извлечь из этого интересного устройства.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Качер отличается от блокинг-генератора электронной плазмой образующейся в p-n-переходе, за счёт которой мы и получаем достаточно высокое напряжение на выходе без применения высоковольтного трансформатора , . В этом можно убедиться, если собрать несложную схемку приведенную ниже. Единственный трансформатор в ней — это две обмотки на ферритовых кольцах на 20 и 5 витков. Несмотря на свою простоту, при 12В питания схема даёт на выходе X1 порядка 1700 Вольт импульсного напряжения (без нагрузки).

Схема может работать в двух режимах: экономичном (разомкнут переключатель SA1) и обычном (контакт SA1 замкнут). В экономичном режиме, при 12В питания, устройство потребляет ток 200..300мА.

Самая интересная в схеме деталь — ферритовый трансформатор TV1. Он мотается на двух вместе сложенных ферритовых кольцах диаметром 10мм. Коллекторная обмотка составляет 5 витков, а базовая — 20, причём, если первая мотается по часовой стрелке, то вторая — против. Провод желательно использовать во фторопластовой изоляции, диаметром 0.05-0.3мм. Коллекторную обмотку лучше намотать более толстым проводом.

Транзисторы для данной схемы испытывались разные. Закономерность выяснилась следующая: чем выше паспортное максимальное напряжение коллектор-эмиттер, и чем круче ВАХ транзистора, тем большее напряжение можно получить на выходе. Идеально подошел импульсный высоковольтный MJE13005 . Его нужно будет установить на небольшой радиатор.

Дроссели L1 и L2 стандартные, на 100мкГн. Конденсаторы выбирайте на напряжение не ниже 100В.

Настройка

Здесь потребуется осцилограф с высокоомным выходом, щуп которого нужно расположить рядом с выходом X1. Лучше не подключаться напрямую, т.к. высокое напряжение может повредить осцилограф. Установите R1 в среднее положение, переключатель SA1 разомкните, и подключите питание 12В. Если осцилограф не показывает качерных испульсов, то поменяйте выводы базовой обмотки TV1.

Если нет осцилографа, то настройку устройства можно произвести с помощью «вилки Авраменко». Её нужно подключить одним-единственным входом к выходу качера.

При работающем качере светодиод HL1 будет светиться несмотря на то, что второй конец этого нехитрого устройства никуда не подключён.

В зависимости от решаемых задач может потребоваться подключать качер к разным нагрузкам. Самое простое — через диод (лучше SF56) и сглаживающий конденсатор запитать лампу дневного света рассчитанную на 220В. При замкнутом SA1 и напряжении питания 15В можно зажигать 10-ти Ваттную лампочку.

Для некоторых задач нужна быстрая зарядка конденсатора до высоких напряжений. Это можно сделать по предыдущей схеме, но конденсатор д.б. неэлектролитическим и рассчитанным на напряжение в 2000В. Также, в этом случае, вместо одного нужно поставить 4-е последовательно соединённых диода.

Самый интересное подключение — длинная линия, обычно — коаксиальный кабель. Его оплётка соединяется с общим проводом схемы, а центральная жила — с выходом X1.

А что будет, если в схеме качера вместо одного транзистора поставить два и заставить их работать попеременно? Читайте об этом .

Используемые материалы

  1. Коротков Д.А. Разработка и исследование генераторов мощных наносекундных импульсов на основе дрейфовых диодов с резким восстановлением и динистров с глубокими уровнями
  2. Пичугина М.Т. Мощная импульсная энергетика

Горчилин Вячеслав, 2014 г.
* Перепечатка статьи возможна с условием установки ссылки на этот сайт и соблюдением авторских прав

Внимание! Администрация сайта сайт не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

  • Участник: Пищулин Андрей Александрович
  • Руководитель: Трунтаева Светлана Юрьевна

Введение

Мы в своей жизни хоть раз, но слышим по телевизору или в интернете о великом гении Николе Тесле и его катушке, которая может передавать электричество по воздуху. Но никто не задумывался, что в домашних условия можно собрать аналогичное устройство под названием -Качер Бровина. В своей работе я хочу показать, как можно пользоваться электроприборами не подключенными к сети, и докажу, что это можно сделать в домашних условиях без особых затрат.

Актуальность темы обусловлена тем, что проблема нахождения чистой энергии в XXI век стоит остро. В современном мире человечество нуждается в электроэнергии каждый день. Она нужна как большим предприятиям, так и в быту. На ее выработку тратится много средств. И поэтому счета за электроэнергию растут каждый год.

Объект исследования: физическое явление по бесконтактной передаче энергии.

Предмет исследования: прибор, который способен передать электричество без проводов.

Гипотеза: Качер Бровина можно собрать в домашних условиях с минимальными затратами.

Цель: изготовить действующую модель качера Бровина и рассмотреть возможности еѐ практического применения.

Задачи:

  • изучить справочную и научную литературу по данной теме;
  • рассмотреть устройство, принцип действия и применение качера Бровина;
  • создать действующую модель качера Бровина;
  • проанализировать полученные знания по данной теме.

Методы исследования:

  • работа с методической литературой
  • сравнительный анализ
  • наблюдение
  • эксперимент

Глава I. Теоретическая часть

1.1. Устройство и принцип работы качер Бровина

Качер Бровина был изобретен в 1987 году советским радиоинженером Владимиром Ильичом Бровиным в качестве элемента электромагнитного компаса. Инженер Бровин В.И. образование высшее – окончил Московский институт электронной техники в 1972 году. В 1987 г. обнаружил несоответствия общепринятым знаниям в работе электронной схемы созданного им компаса и стал их изучать. Соорудил множество изобретений на дому. Одно из них – Качер Бровина.

Давайте рассмотрим более подробно, что же это за прибор. Качер Бровина –это разновидность генератора, собранного на одном транзисторе и работающего, со слов изобретателя, в нештатном режиме. Прибор демонстрирует таинственные свойства, которые восходят к исследованиям Николы Тесла. Они не вписываются ни в одну из современных теорий электромагнетизма. По всей видимости, качер Бровина представляет собой своеобразный полупроводниковый разрядник, в котором разряд электрического тока проходит в кристаллической основе транзистора, минуя стадию образования электрической дуги (плазмы). Самое интересное в работе устройства -это то, что после пробоя кристалл транзистора полностью восстанавливается. Это объясняется тем, что в основе работы прибора используется обратимый лавинный пробой, в отличие от теплового, который для полупроводника является необратимым. Однако в качестве доказательства данного режима работы транзистора приводят только косвенные утверждения. Никто, кроме самого изобретателя, работу транзистора в описываемом приборе детально не исследовал. Так что это всего лишь предположения самого Бровина. Так, например, для подтверждения «качерного» режима работы устройства изобретатель приводит следующий факт: дескать, независимо от того, какой полярностью к прибору подключить осциллограф, полярность импульсов, показываемая им, будет всегда положительная.

Может, качер – это разновидность блокинг-генератора? Существует и такая версия. Ведь электрическая схема прибора сильно напоминает генератор электрических импульсов. Тем не менее автор изобретения подчеркивает, что у его устройства существует неочевидное отличие от предлагаемых схем. Он дает альтернативное объяснение протеканию физических процессов внутри транзистора. В блокинг-генераторе полупроводник периодически открывается в результате протекания электрического тока через катушку обратной связи базовой цепи. В качере транзистор так называемым неочевидным способом должен быть постояннозакрыт (т. к. создание электродвижущей силы в подсоединенной к базовой цепи полупроводника катушке обратной связи все равно способно его открыть). При этом ток, образованный накоплением электрических зарядов в базовой зоне для дальнейшего разряда, в момент превышения порогового значения напряжения создает лавинный пробой. Тем не менее транзисторы, используемые Бровиным, не предназначены для функционирования в лавинном режиме. Для этого спроектирован специальный ряд полупроводников. По утверждению изобретателя, можно использовать не только биполярные транзисторы, но и полевые, а также радиолампы, несмотря на то что они имеют принципиально разную физику работы. Это заставляет акцентировать внимание не на исследованиях самого транзистора в качере, а на специфическом импульсном режиме работы всей схемы. По сути, этими исследованиями и занимался Никола Тесла.

Качер Бровина является оригинальным вариантом генератора электромагнитных колебаний. Его можно собрать на различных активных радиоэлементах. В настоящий момент при его сборке используют полевые или биполярные транзисторы, реже –радиолампы (триоды и пентоды). Качер –это качатель реактивностей, как сам расшифровал эту аббревиатуру автор изобретения Владимир Ильич Бровин. Качер Бровина питается от модифицированного сетевого адаптера 12 В, 2 А, потребляет 20 Вт. Он преобразует электрический сигнал в поле частотой 1 МГц с эффективностью 90%. Одной из деталей данного устройства является пластиковая труба 80х200 мм. На нее намотаны первичные и вторичные обмотки резонатора. Вся электронная часть устройства размещается в середине этой трубы. Данная схема полностью стабильна, она может работать сотни часов без перерыва. Качер Бровина с самозапиткой интересен тем, что способен зажигать не подключенные неоновые лампы на расстоянии до 70 см.

1.2. Области применения

Широкое практическое применение новых устройств и изделий, функционирующих на основе этого нового физического явления, позволит получить весьма значительный экономический и научно-технический эффект в различных сферах и областях человеческой деятельности.

Рассмотрим области применения данного устройства:

1. Новые реле и магнитные пускатели, построенные на основе широкого использования качер-технологии:

  • может привести к снижению энергозатрат и повышению эффективности производства в целом, что в совокупности позволит получить в экономике страны весьма существенный экономический эффект;

2. Устройства, засвечивающие люминесцентные лампы (лампы дневного света) не от 220 В, как сейчас, а применяя изделия КАЧЕР-технологии, от напряжения питания от 5 до 10 В:

  • это позволит существенно снизить уровень пожаро и взрывоопасности

3. Устройства, обеспечивающие возможность не последовательного (используемого в настоящее время), а параллельного соединения отдельных элементов солнечных батарей:

  • позволят значительно повысить надежность, долговечность и эффективность их работы, а также получить значительный экономический эффект от их применения;

4. Устройства индуктивной передачи управляющей информации и энергии между различными светофорами, расположенными по разные стороны перекрестка и входящими в состав одного светофорного объекта (без использования применяемых в настоящее время для этого электрических проводов, с большими трудозатратами на их прокладку):

  • позволят сэкономить электроэнергию и затраты на нее.

1.3. Отрицательное воздействие

Несмотря на положительные моменты использования данного устройства, нельзя не отметить его отрицательного воздействия. Выполняя данную практическую работу, я обратил внимание на то, что из за сильного электромагнитного поля, созданного вблизи качера, из строя выходят сотовые телефоны, фотоаппарат, планшет. И здесь я задумался о том, что помимо положительных моментов, данный прибор оказывает отрицательное воздействие, в том числе на организм человека. Прочитав литературу по данному вопросу, я выяснил, что сильное электромагнитное поле оказывает негативное влияние на нервную систему человека. Длительное нахождение возле работающего прибора вызывает головную боль, и при близком контакте несильную ноющая боль в мышцах рук. Помимо этого, как выяснилось, качер может выделять озон, это мы можем ощутить по соответственному запаху.

Так же не стоит трогать руками разряды, из-за высокой частоты, может остаться небольшой ожог на коже. Таким образом, можно сделать вывод, о том, что при работе с данным прибором необходимо соблюдать правила по технике безопасности:

  1. Не пробуйте трогать руками разряды. Боль, если и будет, то несильная, но ожог вам обеспечен.
  2. Не подпускайте к устройству домашних животных.
  3. Не подносите к устройству мобильные телефоны и другую электронику.
  4. Не стоит находиться длительное время рядом с включенным прибором.

Глава II. Практическая часть

2.1. Сборка установки качера Бровин

Рассмотрим этапы сборки данного прибора в домашних условиях.

Базовые элементы Качера:

  1. катушка индуктивности (вторичная обмотка);
  2. индуктор (первичная обмотка);
  3. плата.
  4. корпус

Схема, которой я руководствовался при сборке, выглядит следующим образом:


Детали установки:

  1. Полихлорвиниловая (ПВХ) труба диаметром не меньше 25 мм и длиной 30 см(от этого будет зависеть дальность свечения лампочек). Я использовал трубу диаметром около 55 мм.
  2. Для изготовления вторичной обмотки качера я использовал медную проволоку, покрытую двойным слоем лака и диаметром 0,20 мм. Её следует намотать на трубу, не менее 1500 витков. (на моем экземпляре качера намотано около 2000 витков.) Через каждые несколько сантиметров я наносил на свежие витки клей, иначе обмотка может сбиться и перепутаться.
  3. Для изготовления первичной обмотки мне потребовался медный провод диаметром 0,5 см, его надо намотать вокруг вторичной катушки. Необходимо сделать около 4 витков. Все обмотки наматываем в одну сторону! Устанавливаем и закрепляем трубу с обмоткой на фанерке или доске, первичную обмотку растягиваем на 1/3 вторичной. Обмотки не должны соприкасаться! Потом вплавляем в трубу сверху металлическую проволоку, размером со швейную иглу и припаиваем к ней конец обмотки. Далее прикручиваем к платформе рядом с катушками радиатор для транзистора, промазываем основание теплопроводной пастой и прикручиваем транзистор к радиатору металлической панелькой.

Для изготовления платы мне понадобились следующие радиодетали:

  1. дроссель,
  2. конденсатор неполярный (1000 v 3000 μ F),
  3. 2 резистора (2,2 кОм и 150 Ом),
  4. транзистор NPN, чем мощнее, тем лучше (их можно найти в обычном блоке питания ПК или на плате старых ламповых телевизоров).

Все монтируется, как показано на схеме (рис. 1). Припаиваем провода питания.


Данное устройство необходимо подключить к блоку питания с напряжением от 12 до 38 v, который я тоже сконструировал самостоятельно (рис. 3)


Проверка качера осуществляется поднесением люминесцентной лампочки к вторичной обмотке, при правильном соединении она загорится. При касании вторичной обмотки металлическим предметом между ними будет разряд. Если качер не работает, то нужно проверить правильность сборки схемы или попробовать поменять концы первичной обмотки.

2.2. Эффекты, наблюдаемые при работе качера Бровина

Рассмотрим эффекты, наблюдаемые при работе Качера Бровина, который я сконструировал в домашних условиях.

  1. Поднесем лампу дневного света к вторичной обмотке, мы видим, что она загорается. (рис. 4) Если поднести к качеру газоразрядную лампу, то она тоже начинает светиться. (рис. 5) Такой же эффект наблюдается и с другими подобными лампами. Так же в обычной лампе накаливания можно увидеть так называемый тлеющий разряд. (рис. 6)




  1. Во время работы качер создаѐт красивые эффекты, связанные с образованием различных видов газовых разрядов – совокупность процессов, возникающих при протекании электрического тока через вещество, находящееся в газообразном состоянии. Разряды качера Бровина:
  • Стример (от англ. Streamer) - тускло светящиеся тонкие разветвлѐнные каналы, которые содержат ионизированные атомы газа и отщеплѐнные от них свободные электроны. Стример - видимая ионизация воздуха (свечение ионов), создаваемая ВВ – полем Качера. (рис. 7)


  • Дуговой разряд- образуется во многих случаях. Например, при достаточной мощности трансформатора, если к его терминалу близко поднести заземлѐнный предмет, между ним и терминалом может загореться дуга. Иногда нужно непосредственно прикоснуться предметом к терминалу и потом растянуть дугу, отводя предмет на большее расстояние. (рис. 8)


Заключение

Качер Бровина – оригинальный вариант генератора электромагнитных колебаний. В своей работе я доказал, что в домашних условиях можно изготовить действующую модель качера, а также рассмотрел возможности еѐ практического применения. Хочу отметить, что моя работа в этом направлении не закончена. В перспективе я хочу сделать качер Бровина с аудиомодуляцией. Для этого нужно немного усложнить схему, добавив два резистора и транзистор. (рис. 9) Тем самым мы сможем по цепи питания качера проигрывать музыку. На практике это выглядит красиво и интересно.


В результате проведѐнных в данной работе исследований, можно сделать вывод о том, что качер Бровина, является простым в изготовлении и настройке прибором. С помощью которого можно продемонстрировать множество красивых и эффектных экспериментов. Во время работы катушки мы наблюдали два типа разрядов.

Анализируя все выше сказанное можно говорить о том, что Качер Бровина может быть с успехом использован в альтернативной энергетике, например, в устройствах получения бесплатной электроэнергии с использованием постоянных магнитов.

В заключение необходимо подчеркнуть следующее: создание новых технологий на основе описанного физического явления может дать России весьма существенные преимущества по отношению к другим странам. Поскольку, проведя в ближайшее время все необходимые исследования этого физического явления и разработав широкую гамму новых устройств и изделий, функционирующих на его основе и предназначенных для широкого практического применения в различных областях и сферах человеческой деятельности, Россия может осуществить новый качественный скачок в своем дальнейшем технологическом развитии. Внедрение российских ноу-хау кардинально изменит всю инфраструктуру энергетики и социума в целом – когда неожиданно откроется и экспериментально подтвердится новый способ получения энергии.


YOUR WEBSITES NAME

Схемы качеров

Теперь, сама катушенция. НЕ советую экспериментировать с более тонким проводом для L1! Только такой, как показано на схеме. Для увеличения связи во вторичкой, можно его лишить изоляции. Только лаком покройте. Иначе потемнеет медь. А она быстро потемнеет при протекании напряжения. Просто красиво, когда голая медь блестит. Мне нравится. Расстояние первички от вторички должно быть 1см, не менее и не более. Если больше, коэффициент связи будет хуже. Если слишком близко - прошивать будет, сгорит транзистор. Шаг намотки - полсантиметра. У меня - 4 витка. Этого вполне достаточно. Теперь вторичка. Намотана она на белой пластиковой тУбе от герметика. И диаметр подходящий и высота. И ничего отпиливать не надо. Только лишь горлышко с резьбой отрезать. Я экспериментировал с разными сечениями провода. У меня получалось и с 0,34 и с 0,57мм. Но лучшие результаты качер показал на сечении провода вторички на 0,34мм. Ток в стриммер катушка отдаёт не такой большой и транзистор не так сильно нагружается. А стриммер, когда вы пальцы подносите к нему, получается похожим на осьминога, протягивающего к жертве свои щупальцы, с жёлтыми огоньками на кончиках. Прикольно. Только, для достижения такого эффекта длинных стриммеров с жёлтыми огоньками, нужно первичку поднять по вторичке почти на середину. Но, внимательно следите за сопротивлением R1! Лучше сразу расположить таким образом и уже регулировать R1, начиная с наибольшего сопротивления. Если не получается, то оставьте первичку внизу вторички традиционно. Теперь отладка питания. Поскольку, сетевое напряжение в домах у нас, мягко говоря, разное, регулируем напряжение смещения базы транзистора R1 так, чтобы пропало гудение стриммера и начался треск. Если гудит, то сопротивление потенциометра R1 мало. Напряжение смещения большое и транзистор сильно греется. Если не включается качер - сопротивление велико. Нужно сопротивление выбрать так, чтобы треск был, но не исчезал, когда мы подносим ладонь к стриммеру. Дело в том, что система очень нестабильна и рабочая частота изменяется, когда мы руку подносим из-за изменения ёмкости вторички. Вот, собственно и всё. Напоследок могу посоветовать, обзавестись всё таки, несколькими транзисторами. Потому как, спалите обязательно транзистор. Не получится с первого раза. Я их спалил штук тридцать, пока научился, при настройке, чувствовать качер. Благо они у нас, в Хабаровске по 42 рубля всего. Почему всего? Да потому что я ведь экспериментировал и с дорогими IGBT-транзисторами даже! Вот они-то стоят о-го-го! 430 рублей штука! А горят моментально. Очень капризные. Хотя, напряжение базы (Gate) у них 20 вольт, в отличие от MJE13009 с его 9 вольтами….

А теперь, рассмотрим схемку такого же качера, но уже на мосфете IRFP460. О мосфетах (полевых транзисторах с изолированным затвором) могу сказать лишь одно: капризные гады! Но! Ежели их всётаки применить и отстроить схему, то они работают намного эффективнее своих сородичей по полупроводниковому пантеону - биполярных транзюков. Они более высокочастотны, более линейны на высоких частотах. У них более, как любят выражаться теславики: "лёгкие" управляющие электроды - затворы, Более лёгкие, чем у биполярников. И большая пропускная мощность, поскольку управляются полевые транзисторы не током, как биполярные, а напряжением. А на выходе - ток. И ток нехилый! Вот такая вот, противоречивая статья. А итог один. Биполярные транзисторы более дёшевы. Поэтому, для начинающего качеростроителя - в самый раз. Да и не только для качеров они неплохи на первых порах. Я поначалу их прекрасно использовал и для полумостовых схем катушек. Но всётаки, полевой транзистор в качере - это что-то! Ну вот, в данной моей схеме я применил IRFP 460. Но немного лучшего результата (длины стриммера) можно достичь мосфетом с литерой "H". Как видите, схема, а вернее, её номиналы, на самом деле, существенно отличаются от опубликованных в нете. Для чего это у них сделано, думаю, догадываетесь... Чтобы вы не повторили их схемы. Я все свои схемы отрабатывал и испытывал. У меня "все ходы записаны" . Схемы мои правдивы. Сам изменял номиналы, сам паял, сам испытывал. Удачи вам;-)

Большинство схем качеров опубликованных в нете, к сожалению, часто бывают попросту нерабочие. Это происходит по нескольким причинам. Первая: Нежелание делиться собственной разработкой с другими. Вторая: Теоретические измышления, часто не подтверждённые практическими опытами. Берут тупо, чуток с одной схемы, чуток с другой. Типа, я сам разработал. В результате, выгорают дорогие транзисторы, пока начинаешь понимать «а король-то голый!»…. Вот, и я шёл таким же опытным путём проб и ошибок. И пришёл к занятнейшим результатам! Кристалл транзистора, работающий в качере в качестве электронного разрядника с обратимым пробоем, ведёт себя довольно непредсказуемо. Но! Мне всё-таки удалось выявить почерки некоторых транзисторов и их закономерности выгорания в столь нестабильном устройстве! Никакие Мосфеты, или IGBT не выдерживают таких варварских режимов работы! Только биполярники! И среди них, наибольшей стойкостью к выгораниям и наибольшей стабильностью к многократным включениям питания обладают высоковольтные переключающие биполярные транзисторы MJE13009. Не перепутайте с ST13009, или с иными буквами… Кстати, у ST13009 напряжение базы, казалось бы, 12 вольт, в отличие от MJE13009 с его 9 вольтами напряжения база-эмиттер, однако, MJE показал просто-таки спартанскую выносливость к выгораниям. Нет, конечно, горит и он, но ведь и у нас руки не из попы растут! Но! транзюк обязательно на радиатор ставим! И нежненько, аккуратненько, регулируем потенциометром R1 напряжение смещения базы транзистора. Сопротивление делаем максимальным, включаем питание и постепенно, начинаем его уменьшать, не забыв поставить рядом с катушкой неонку, для индикации начала работы качера без стриммера. Если качер так и не включился - поменяйте полярность первички, не забыв поставить опять максимальное сопротивление R1 (нижнее положение стрелки). Питание только от автотрансформатора на 110 вольт. Не более! Горит транзистор, при большем напряжении питания…Как бы мы ни уменьшали напряжение смещения, транзистор или просто не включается, или сразу перегорает. И диод именно такой!
Поставите другой - не попрёт! Если на меньший ток поставите - сгорит, сделает КЗ и спалит транзистор… И ещё: Выпрямитель - только такой, однополупериодный. Он играет роль и делителя напряжения и самое главное - прерывателя. Засчёт этого и разряд такой трескучий и красивый. Поставите двухполупериодный выпрямитель и «веник» разряда будет тихий, пушистый. И греться транзистор будет неслабо! В общем, никакого эффекта. Только кайф обломаете;-) .



Похожие статьи