Технические характеристики микросхемы lm 10 86 схемы. Как работать с ОУ LM358: схемы включения и практическое применение

Качественный стереофонический усилитель для дома, который мы здесь рассмотрим, основывается на паре микросхем LM3876 (или LM3886). Даташит . Кроме самих усилителей мощности, был в отдельном корпусе собран блок питания. Он обеспечивает двухполярное напряжение 35В и более низкое 15В - для питания предусилителя на OPA2134. В принципе острой необходимости в отдельном предусилителе нет. С ним и уровень шума будет чуть выше, и фоновый шум может быть слышен в очень тихом месте, поэтому если конструкцию планируется использовать с источником достаточно мощного сигнала линейного выхода (около 1В) - от преампа можно отказаться.


Выходная мощность предлагаемой схемы зависит от подаваемого напряжения питания. График показан ниже.




Функция Mute . Микросхема LM3876 позволяет пользователю отключить музыку в УМЗЧ путём переключения током 0,5 мА состояния вывода 8. В данной схеме задержка на включение звука выполнена простейшей RC цепочкой R1 C6, которая в первый момент после старта не пропускает напряжение запуска микросхемы, чтоб из динамиков не доносился щелчёк.


Предварительный усилитель несколько повышает чувствительность и позволяет с помощью переключателя сформировать необходимую АЧХ. Часто бывает нужно немного приподнять низа или ВЧ, что цепь коррекции успешно и выполняет. Дополнительная его функция - коммутация входов (DVD плеер, тюнер, телевизор, компьютер).


Блок питания должен обеспечить два двухполярных напряжения: +-35 вольт 3 ампера для самой микросхемы LM3876 и +-15 вольт 0,05 ампер для драйвера на ОУ.


С целью свести практически к нулю возможные наводки и помехи от трансформатора и силовых цепей выпрямителя напряжения, БП был собран в отдельной алюминиевой коробке, с применением тороидального трансформатора, который, как вы знаете, обладает минимальным полем. Отдельный небольшой трансформатор на 9 вольт питает систему "мягкий запуск", но если не хотите усложнять конструкцию - исключите этот модуль.

Корпус усилителя

Корпус самодельного усилителя выполнен также из алюминия, эффективно экранируя детали схемы от возможных электромагнитных помех. На передней панели только пара регуляторов (громкость и баланс) и кнопка питания 220В, с зелёным светодиодом. Сзади УНЧ есть 4 стереовхода аудио, клеммы для подключения аккустических систем и гнездо под питающий кабель от блока питания.


В принципе микросхема показала себя очень достойно. Никаких шумов нет вообще - даже прислонив ухо к динамикам невозможно расслышать фон. При громкости до 50 ватт звук не имеет никаких заметных искажений, к тому же на такой мощности они и не слышны. Ведь при комфортных 10 ватт Кни составляет всего 0,01% во всём спектре звуковых частот. А для тех, кто не сможет достать эту микросхему, рекомендуем собрать домашний УМЗЧ исключительно .

Интегральные стабилизаторы этой серии удобны в использовании во множестве иных применений. Некоторые из его нестандартных применений я вам хочу показать.
В силу того, что данные стабилизаторы имеют "плавающие" относительно "земли" потенциалы выводов, ими могут быть стабилизаторами напряжения в несколько сотен вольт, при условии, что не будет превышен допустимый предел разности напряжений вход-выход.

Кроме того, ИС LM117/LM217/LM317 удобны при создании простых регулируемых импульсных стабилизаторов, стабилизаторов с программируемым выходным напряжением, либо для создания прецизионного стабилизатора тока.
Некоторые схемы их необычных применений показаны на рисунках.

Мощный повторитель напряжения.

R1-определяет выходное сопротивление зарядного устройства Zвых = R1(1+R3/R2). Использование R1 позволит при малой скорости заряда обеспечить максимальный заряд батареи.
________________________________________

Интегральные стабилизаторы данной серии можно с успехом использовать для стабилизации тока. Это очень удобно для изготовления на их основе различных зарядных устройств.
________________________________________

На этой схеме изображён интегральный стабилизатор напряжения с плавным запуском. Ёмкость конденсатора С2 задает плавность включения стабилизатора.
________________________________________

________________________________________

Высокая стабильность данного стабилизатора, достигается за счет использования дополнительного интегрального двухвыводного стабилитрона повышенной стабильности.

Интегральные стабилизаторы напряжения LM117/LM317, LM150/IP150, LM138/LM238/LM338
Долгое время у меня служил блок питания, построенный по классической схеме параметрического стабилизатора напряжения с защитой от короткого замыкания . Только в целях получения большего выходного тока транзисторы VT2 и VT3 были заменены на КТ315 и КТ818 соответственно. Полярность выходного напряжения при этом другая, так что все конденсаторы, диоды и стабилитрон (я, кстати, применял КС518 - он выдает 18 вольт) должны быть включены обратной полярностью. Кроме того, вместо VT1 - МП38.
Этот блок питания (БП) являлся универсальным источником энергии для моих домашних экспериментов, выдавая от 0,5 до 18 вольт стабилизированного напряжения при токе 1 - 1,5А. Однако был у него и недостаток - из-за низкого КПД подобных схем выходной мощный транзистор греется как печка.
Долго я хотел сделать этот БП на интегральной базе (там и КПД повыше, да и есть такие функции как защита от перегрева, от короткого замыкания или даже от превышения допустимого тока), только не попадались мне на глаза подобные микросхемы. К142ЕН1, К142ЕН2 - малая мощность, придется ставить дополнительный транзистор на усиление тока, да и слишком много выводов у неё. На КР142ЕН5 можно сделать регулируемый стабилизатор напряжения (СН), однако в этом случае минимальное напряжение будет 5В, что тоже нежелательно.
Таким образом, на отечественной элементной базе построить интегральный СН с желаемыми параметрами невозможно.
Однако зарубежная промышленность (точнее, фирма National Semiconductor) выпускает одну интересную микросхему LM317 (аналог - LM117 той же фирмы - различаются по ряду параметров, в частности, по диапазону рабочих температур, у LM117 он шире (от -55 до +150 °C)).
Так вот, эти микросхемы представляют собой регулируемые СН с выходным напряжением 1,2 - 37В при выходном токе 1,5А. Как уверяют производители, они снабжены защитой от короткого замыкания, выходной ток не зависит от температуры кристалла, гарантируется максимальная нестабильность выходного напряжения 0,3%, подавление пульсаций - на уровне 80 дБ.
К этому стоит добавить малые размеры (микросхема имеет всего три вывода, выпускается в различных корпусах: ТО-220, ТО-3, ТО-39, TO-263, SOT-223, TO-252 (рис. 1)) и низкую стоимость (в магазине я купил LM317 в корпусе ТО-220 за 10 рублей).

Рисунок 1 - Внешний вид корпусов LM117/LM317
Схема регулируемого стабилизатора напряжения показана на рисунке 2.

Рисунок 2 - Схема регулируемого СН (1,25 - 25 В)
Также эти микросхемы применяют как зарядные устройства для аккумуляторных батарей. Типичная схема такого устройства приведена на рисунке 3. Здесь используется принцип зарядки постоянным током.

Рисунок 3 - Схема зарядного усторойства

Как видно из рисунка, ток заряда определяется сопротивлением R1. Значения этого сопротивления лежат в пределах, указанных на рисунке. Это соответствует току заряда от 10 мА до 1,56 A.
Хочу отметить, что если требуется получить больший выходной ток СН, то лучше использовать специальные микросхемы:
- на ток до 3А рассчитана LM150 (IP150);
- на ток до 5А рассчитаны LM138 / LM238 / LM338 (отличаются диапазоном рабочих температур, самый широкий - у LM138 (от -55 до +150 °C).
Схемы включения у этих микросхем такие-же, что и на рисунке 2, цоколевка - как на рисунке 1.
Далее приведены схемы зарядного устройства для автомобильного кислотно-свинцового аккумулятора (рис. 4) и стабилизатора напряжения с максимальным током 10А (рис. 5) как примеры дополнительного применения микросхем LM150 и LM138.

Рисунок 4 - Зарядное устройство для автомобильного аккумулятора на LM150(IP150)


Рисунок 5 - СН с выходным током до 10А

В заключение хочу заметить, что выходной конденсатор С2 по схеме на рис.2 может быть емкостью от 1 до 1000 мкФ - в зависимости от целей применения СН. Однако при емкости свыше 10 мкФ и/или выходном напряжении выше 25 В требуется в схему включать защитные диоды (рис. 6). Это нужно для того, чтобы предотвратить импульс тока, который может возникнуть при коротком замыкании в нагрузке из-за разряда выходного конденсатора. Этот импульс тока может достигать величины 20 А и повредить микросхему.


Рисунок 6

Литература:
1. Shema.Tomsk.Ru - Блок питания с защитой от КЗ;
2. Shema.Tomsk.Ru - Стабилизаторы напряжения на микросхемах серии К142;
3. National Semiconductor - LM117/LM317A/LM317 3-Terminal Adjustable Regulator;
4. LM138/238/LM338 - ADJUSTABLE VOLTAGE REGULATORS THREE-TERMINAL 5-A;
5. LM150/250/LM350 - ADJUSTABLE VOLTAGE REGULATORS THREE-TERMINAL 3 A;
6. LM150K 3.0A Adjustable Positive Voltage Regulator.

Очень многие используют аккумуляторы для питания радиоэлектронной аппаратуры, при этом заряжают их зарядными устройствами сомнительного поисхождения. Ниже приводится описание простого зарядного устройсва обеспечивающего стандартный режим заряда.
Зарядное устройство использует принцип зарядки постоянным токо. В качестве источника тока используется очень хорошая микросхема LM317. Схема включения изображена на рисунке:

Класическое определение источника тока: источник тока - это источник электрической энергии имеющий безконечне внутреннее сопротивление и такое же безконечное напряжение на свобоных зажимах.
Принцип работы примерно такой. LM317 регулируя ток по выводу 3 пытается добится падения напряжения на резисторе R1 равного 1,25V. Следовательно изменяя номинал R1 можно регулировать ток в определенных пределах. Эти приделы ограничены с одной стороны величиной в 0,8 Ом а с другой в 120 Ом(0,8 <120 Ом). Не трудно посчитать что в соответствии этим величинам R1 можно получить ток от 0,01 Ампера (10 мА) до 1,5 Ампер.
Поскольку расположение выводов у LM317 не очевидно привожу рисунок самой микросхемы. (вид со стороны маркировки)

Пример
Итак, почти все что надо знать уже изложено, вот конкретный пример использования.
Емкость
mA Ток зарядки
mA Сопротивление
резистора Ом
500 50 24
Так как для нормальной работы необходимо чтобы было хоть какоето падение напряжения на LM317, поэтому напряжение подаваеммое на вход источника тока, должно превосходить наряжение на заряженном аккумуляторе. Например, если это два пальчиковых аккумулятора, то напряжение когда они полностью заряженны приближается к 3 В, и для их зарядки рекомендуется на вход источника тока подавать напряжение не менее 6 В. С другой стороны LM317 не "дубовая" и присутствие более 30 В на входе не желательно.
Питать зарядное устройство наиболее рационально от сети переменного тока 220В через понижающий трансформатор и выпрямитель с простейшим сглаживающим фильтром.

На основе интегральной микросхемы LM3914 производителя National Semiconductors можно конструировать различные светодиодные индикаторы, имеющие линейную шкалу. Основой LM3914 является 10 компараторов.

Входной сигнал через операционный усилитель подается на инверсные входы компараторов LM3914, а прямые входы их подключены к напряжения. Десять выходов являются выходами компараторов, к которым подключаются светодиоды.

Выбор работы индикации: либо режим «столбик», это когда с изменением уровня входного сигнала меняется количество светящихся светодиодов, либо режим «точка», то есть с изменением уровня сигнала, перемещаясь по линейке светится только один светодиод.

Назначение выводов LM3914:

  • 1, 10…18 — выходы.
  • 2 — минус питания.
  • 3 — плюс источника питания от 3…18 вольт.
  • 4 — на данный вывод подается напряжение, величина которого определяет нижний уровень индикации. Допустимый уровень от Uн.min. = 0 до Uн.max. = (Uпит. – 1,5В.)
  • 5 — на данный вывод подается входной сигнал.
  • 6 — на данный вывод подается напряжение, величина которого определяет верхний уровень индикации. Допустимый уровень от Uв.min. = 0 до Uв.max. = (Uпит. – 1,5В.)
  • 7, 8 — выводы для регулирования тока, протекающего через светодиоды.
  • 9 — вывод отвечает за режим работы индикации («точка» или «столбик»)

Шаг переключения от одного светодиода к другому автоматически высчитывается микросхемой. Шаг будет равен (Uв. – Uн.)/10.

Алгоритм работы индикатора на микросхеме LM3914

До тех пор, пока на ножке Uвх. сигнал ниже по сравнению с напряжением на выводе Uн., светодиоды не горят. Как только входной сигнал сравняется с Uн. – загорится светодиод HL1. При последующем увеличение сигнала на величину (Uв. – Uн.)/10, в режиме «точка» выключается HL1 и одновременно загорается HL2. В том случае если LM3914 функционирует в режиме «столбик», то при включении HL2, HL1 не гаснет.

Микросхема LM3914 спроектирована для создания светодиодных индикаторов с линейной шкалой, и поэтому резисторы в составе делителя обладают одинаковым сопротивлением. Микросхема имеет источник опорного напряжения в 1,25 вольт. С помощью подключения дополнительно 2-х резисторов можно добиться увеличения опорного напряжения (не более Uпит. — 2 вольта; максимум 12 вольт).

Расчет опорного напряжения можно выполнить по следующей формуле:

Uоп = (R2/R1+1)*1,25В + Iв*R2, где

  • R1 — резистор, подключаемый к ножкам 7 и 8 микросхемы LM3914.
  • R2 — резистор, подключаемый между ножками 8 и минусом питания схемы.
  • Iв – сила тока на ножке 8 микросхемы (около 100 мкА)

Для выбора одного из двух режимов работы нужно сделать следующее:

  • Режим «точка» — вывод 9 подключить к минусу питания или оставить неподключенным.
  • Режим «столбик» — вывод 9 подсоединить к плюсу питания микросхемы.

Технические характеристики микросхемы LM3914

Стандартная схема подключения входного напряжения на микросхему LM3914

В зависимости от величины входного напряжения Uвх, необходимо подобрать сопротивление R1, при котором будет светиться верхний по шкале светодиод. Данное сопротивление можно вычислить по формуле: R1 = R2(Uвх/1,25 — 1).

Посредством включения резистора R3 можно добиться регулирования тока протекающего через светодиоды.

(1,6 Mb, скачано: 4 020)

LM317 как никогда подходит для проектирования несложных регулируемых источников и , для электронной аппаратуры, с различными выходными характеристиками, как с регулируемым выходным напряжением, так и с заданным напряжением и током нагрузки.

Для облегчения расчета необходимых выходных параметров существует специализированный LM317 калькулятор, скачать который можно по ссылке в конце статьи вместе с datasheet LM317.

Технические характеристики стабилизатора LM317:

  • Обеспечения выходного напряжения от 1,2 до 37 В.
  • Ток нагрузки до 1,5 A.
  • Наличие защиты от возможного короткого замыкания.
  • Надежная защита микросхемы от перегрева.
  • Погрешность выходного напряжения 0,1%.

Эта не дорогая интегральная микросхема выпускается в корпусе TO-220, ISOWATT220, TO-3, а так же D2PAK.

Назначение выводов микросхемы:

Онлайн калькулятор LM317

Ниже представлен онлайн калькулятор для расчета стабилизатора напряжения на основе LM317. В первом случае, на основе необходимого выходного напряжения и сопротивления резистора R1, производится расчет резистора R2. Во втором случае, зная сопротивления обоих резисторов (R1 и R2), можно вычислить напряжение на выходе стабилизатора.

Калькулятор для расчета стабилизатора тока на LM317 смотрите .

Примеры применения стабилизатора LM317 (схемы включения)

Стабилизатор тока

Данный стабилизатор тока можно применить в схемах различных зарядных устройств для аккумуляторных батарей или регулируемых источников питания. Стандартная схема зарядного устройства приведена ниже.

В данной схеме включения применяется способ заряда постоянным током. Как видно из схемы, ток заряда зависит от сопротивления резистора R1. Величина данного сопротивления находится в пределах от 0,8 Ом до 120 Ом, что соответствует зарядному току от 10 мА до 1,56 A:

Источник питания на 5 Вольт с электронным включением

Ниже приведена схема блока питания на 15 вольт с плавным запуском. Необходимая плавность включения стабилизатора задается емкостью конденсатора С2:

Схема включения с регулируемым выходным напряжением

Схема линейного интегрального стабилизатора с регулируемым выходным напряжением LM317 разработана автором первых монолитных трёхвыводных стабилизаторов Р. Видларом почти 50 лет назад. Микросхема получилась настолько удачной, что без изменений выпускается в настоящее время всеми основными производителями электронных компонентов и в разных вариантах включения применяется во множестве устройств.

Общая информация

Схемотехника устройства обеспечивает более высокие показатели по нестабильности параметров, в сравнении со стабилизаторами на фиксированное напряжение, и имеет практически все типы защиты, применяемые для интегральных микросхем: ограничение выходного тока, отключение при перегреве и превышении предельных рабочих параметров.

При этом требуется минимальное количество внешних компонентов для LM317, схема использует встроенные средства стабилизации и защиты.

Устройство выпускается в трёх вариантах исполнений – LM 117/217/317, отличающихся предельно допустимой рабочей температурой:

  • LM117: от -55 до 150 оС;
  • LM217: от -25 до 150 оС;
  • LM317: от 0 до 125 оС.

Все типы стабилизаторов производятся в стандартных корпусах TO-3, различных модификациях TO-220, для поверхностного монтажа – D2PAK, SO-8. Для устройств малой мощности используется ТО-92.

Цоколёвка для всех трёхвыводных изделий совпадает, что облегчает их замену. В зависимости от применённого корпуса, в маркировку вводятся дополнительные обозначения:

  • K – TO-3 (LM317K);
  • T – TO-220;
  • P – ISOWATT220 (пластмассовый корпус);
  • D2T – D2PAK;
  • LZ – TO-92;
  • LM – SOIC8.

Для LM317 используются все типоразмеры, LM117 выпускается только в корпусе ТО-3, LM217 – в ТО-3, D2PAK и ТО-220. Микросхемы LM317LZ в корпусах ТО-92 отличаются пониженными значениями максимальной мощности и выходного тока, до 100 мА, при аналогичных других свойствах. Иногда производитель использует свою маркировку, например, LM317НV от Texas Instruments – высоковольтные регуляторы в диапазоне 1,2-60 В, при этом цоколёвки корпусов совпадают с изделиями других фирм. В отличие от других микросхем, аббревиатура ЛМ (LM) применяется всеми производителями. Расшифровка других возможных обозначений приводится в техническом описании конкретного прибора.

Основные электрические параметры LM 117/217/317

Характеристики регуляторов определяются при разнице между входным (Ui ) и выходным напряжением (Uo ) 5 вольт, токе нагрузки 1,5 ампера и максимальной мощности 20 ватт:

  • Нестабильность по напряжению – 0,01%;
  • Опорное напряжение (UREF) – 1,25 В;
  • Минимальный ток нагрузки – 3,5 мА;
  • Максимальный выходной ток – 2,2 А, при разнице входного и выходного напряжений не более 15 В;
  • Предельная рассеиваемая мощность ограничена внутренней схемой;
  • Подавление пульсаций входного напряжения – 80 дБ.

Важно отметить! При максимально возможном значении Uin – Uout = 40 вольт допустимый ток нагрузки снижается до 0,4 ампер. Предельная рассеиваемая мощность ограничена внутренней схемой защиты, для корпусов ТО-220 и ТО-3 – приблизительно от 15 до 20 ватт.

Применения регулируемого стабилизатора

При проектировании электронных устройств, содержащих стабилизаторы напряжения, более предпочтительно применять регулятор напряжения на LM317, особенно для ответственных узлов аппаратуры. Использование таких решений требует дополнительной установки двух резисторов, но обеспечивает лучшие параметры питания, чем традиционные микросхемы с фиксированными напряжениями стабилизации, обладают большей гибкостью для разных применений.

Напряжение на выходе рассчитывается по формуле:

UOUT = UREF (1+ R2/R1) + IADJ, где:

  • VREF = 1,25V, ток управляющего выхода;
  • IADJ весьма мал – около 100 мкА и определяет погрешность установки напряжения, в большинстве случаев не учитывается.

Входной конденсатор (керамический или танталовый 1мкФ) устанавливается при значительном удалении от микросхемы ёмкости фильтра источника питания – более 50 мм, конденсатор на выходе применяется для снижения влияния переходных процессов на высоких частотах, для многих применений необязателен. Схема включения использует только один элемент регулировки – переменный резистор, на практике применяется многооборотный или заменяется постоянным нужного номинала. Метод управления позволяет реализовать программируемый источник на несколько напряжений, переключаемый любым доступным способом: реле, транзистором и т. д. Подавление пульсаций можно улучшить, если зашунтировать вывод управления конденсатором ёмкостью 5-15 мкФ.

Диоды типа 1N4002 устанавливаются при наличии выходного фильтра с конденсаторами большой ёмкости, выходном напряжении более 25 вольт и шунтирующей ёмкости свыше 10 мкФ. Микросхема LM317 редко используется на предельных режимах эксплуатации, средний ток нагрузки для многих решений не превышает 1,5 А. Установка прибора на радиатор необходима в любом случае, при выходном токе более 1 ампера желательно использовать корпус ТО-3 или ТО-220 с металлической контактной площадкой LM317T.

К сведению. Увеличить нагрузочную способность стабилизатора напряжения можно, применив мощный транзистор как регулирующий элемент для выходного тока.

Ток нагрузки устройства определяется параметрами VT1, подойдёт любой n-p-n транзистор с током коллектора 5-10 А: TIP120/132/140, BD911, КТ819 и др. Возможно параллельное включение двух-трёх штук. В качестве VT2 применяется любой кремниевый средней мощности, соответствующей структуры: BD138/140, КТ814/816.

Следует учитывать особенности подобных схем: допустимая разница между напряжениями на входе и выходе формируется из падений напряжений на транзисторе, около 2 вольт, и микросхеме, для которой минимальное значение – 3 вольта. Для устойчивой работы устройства рекомендуется не менее 8-10 вольт.

Свойства микросхем серии LM317 позволяют стабилизировать с высокой точностью ток нагрузки в широких пределах.

Фиксация тока обеспечивается подключением всего одного резистора, номинал которого рассчитывается по формуле:

I = UREF/R + IADJ = 1.25/R, где UREF = 1,25 V (сопротивление R в омах).

Схема может применяться для зарядки аккумуляторов стабильным током, питания светодиодов, для которых важно постоянство тока при изменении температуры. Также стабилизатор тока на LM317 может быть дополнен транзисторами, как и в случае стабилизации напряжения.

Отечественная промышленность выпускает функциональные аналоги LM317 со сходными параметрами – микросхемы КР142ЕН12А/Б с токами нагрузки 1 и 1,5 ампера.

Выходной ток до 5 ампер обеспечивает стабилизатор LM338 при аналогичных других характеристиках, что позволяет использовать все преимущества интегрального прибора без внешних транзисторов. Полным аналогом LM317 по всем параметрам, кроме полярности, является регулятор отрицательного напряжения LM337, на базе этих двух микросхем легко строятся двухполярные блоки питания.

Видео



Похожие статьи