Что такое 3 14. История возникновения числа Пи

14 мар 2012

14 марта математики отмечают один из самых необычных праздников - Международный день числа «Пи». Эта дата выбрана неслучайно: числовое выражение π (Пи) - 3,14 (3 месяц (март) 14 число).

Впервые с этим необычным числом школьники сталкиваются уже в младших классах при изучении круга и окружности. Число π - математическая константа, которая выражает отношение длины окружности к длине ее диаметра. Т.е если взять окружность с диаметром равным единице, то длина окружности и будет равна числу «Пи». Число π имеет бесконечную математическую продолжительность, но в повседневных вычислениях используют упрощенное написание числа, оставляя только два знака после запятой, - 3,14.

В 1987 году этот день отмечался впервые. Физик Ларри Шоу из Сан-Франциско заметил, что в американской системе записи дат (месяц / число) дата 14 марта - 3/14 совпадает с числом π (π = 3,1415926…). Обычно празднования начинаются в 1:59:26 дня (π = 3,1415926 …).

История числа «Пи»

Предполагается, что история числа π начинается в Древнем Египте. Египетские математики определяли площадь круга диаметром Dкак (D-D/9) 2 . Из данной записи видно, что в то время число π приравнивали к дроби (16/9) 2 , или 256/81, т.е. π 3,160...

В VI в. до н.э. в Индии в религиозной книге джайнизма есть записи, свидетельствующие о том, что число π в то время принимали равным квадратному корню из 10, что даёт дробь 3,162...
В III в. до н.э.Архимед в своей небольшой работе "Измерение круга" обосновал три положения:

  1. Всякий круг равновелик прямоугольному треугольнику, катеты которого соответственно равны длине окружности и её радиусу;
  2. Площади круга относятся к квадрату, построенному на диаметре, как 11 к 14;
  3. Отношение любой окружности к её диаметру меньше 3 1/7 и больше 3 10/71.

Последнее положение Архимед обосновал последовательным вычислением периметров правильных вписанных и описанных многоугольников при удвоении числа их сторон. По точным расчётам Архимеда отношение окружности к диаметру заключено между числами 3*10 / 71и 3*1/7, а это означает, что число «пи» равно 3,1419... Истинное значение этого отношения 3,1415922653...
В V в. до н.э. китайский математик Цзу Чунчжи нашёл более точное значение этого числа: 3,1415927...
Впервой половине XV в. астроном и математикал-Каши вычислил π с 16 десятичными знаками.

Спустя полтора столетия в Европе Ф.Виетнашёл число π только с 9 правильными десятичными знаками: он сделал 16 удвоений числа сторон многоугольников. Ф.Виетпервым заметил, что π можно отыскать, используя пределы некоторых рядов. Это открытие имело большое значение, оно позволило вычислить π с какой угодно точностью.

В 1706 г английский математик У.Джонсон ввёл обозначение отношения длины окружности к диаметру и обозначил его современным символом π первой буквой греческого слова periferia-окружность.

На протяжении длительного периода времени учёные всего мира пытались разгадать тайну этого загадочного числа.

В чем же сложность вычисления значения π ?

Число π является иррациональным: его невозможно выразить в виде дроби p/q, где p и q целые числа, данное число не может быть корнем алгебраического уравнения. Нельзя указать алгебраическое или дифференциальное уравнение, корнем которого будет π, поэтому данное число называется трансцендентным и вычисляется путём рассмотрения какого-либо процесса и уточняется за счет увеличения шагов рассматриваемого процесса. Множественные попытки просчитать максимальное количество знаков числа π привели к тому, что сегодня, благодаря современной вычислительной технике, можно рассчитать последовательность с точностью в 10 триллионов цифр после запятой.

Цифры десятичного представления числа π достаточно случайны. В десятичном разложении числа можно найти любую последовательность цифр. Предполагают, что в данном числе в зашифрованном виде есть все написанные и ненаписанные книги, любая информация, которую только можно представить, находится в числе π.

Можете сами попробовать разгадать тайну этого числа самостоятельно. Записать число «Пи» полностью, конечно не получится. Но самым любопытным предлагаю рассмотреть первые 1000 знаковчисла π = 3,
1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989

Запоминаем число «Пи»

В настоящее время с помощью вычислительной техники вычислено в десять триллионов знаков числа «Пи». Максимальное число цифр, которое смог запомнить человек составляет сто тысяч.

Чтобы запомнить максимальное количество знаков числа «Пи», используют различные стихотворные «запоминалки», в которых слова с определённым количеством букв располагаются в такой же последовательности, как цифры в числе «Пи»: 3,1415926535897932384626433832795…. Для восстановления числа необходимо подсчитать число символов в каждом из слов и записать по порядку.

Вот и знаю я число, именуемое "Пи". Молодец! (7 цифр)

Вот и Миша и Анюта прибежали
Пи узнать число они желали. (11 цифр)

Это я знаю и помню прекрасно:
Пи многие знаки мне лишни, напрасны.
Доверимся знаньям громадным
Тех, пи кто сосчитал, цифр армаду. (21 цифра)

Раз у Коли и Арины
Распороли мы перины.
Белый пух летал, кружился,
Куражился, замирал,
Ублажился,
Нам же дал
Головную боль старух.
Ух, опасен пуха дух! (25 знаков)

Можно использовать рифмованные строки, которые помогают запомнить нужное число.

Чтобы нам не ошибиться,
Нужно правильно прочесть:
Девяносто два и шесть

Если очень постараться,
Можно сразу пи прочесть:
Три, четырнадцать, пятнадцать,
Девяносто два и шесть.

Три, четырнадцать, пятнадцать,
Девять, два, шесть, пять, три, пять.
Чтоб наукой заниматься,
Это каждый должен знать.

Можно просто постараться
И почаще повторять:
«Три, четырнадцать, пятнадцать,
Девять, двадцать шесть и пять».

Остались вопросы? Хотите знать больше о числе "Пи"?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

ЧИСЛО p – отношение длины окружности к ее диаметру, – величина постоянная и не зависит от размеров окружности. Число, выражающее это отношение, принято обозначать греческой буквой 241 (от «perijereia » – окружность, периферия). Это обозначение стало употребительным после работы Леонарда Эйлера , относящейся к 1736, однако впервые оно было употреблено Уильямом Джонсом (1675–1749) в 1706. Как и всякое иррациональное число, оно представляется бесконечной непериодической десятичной дробью:

p = 3,141592653589793238462643… Нужды практических расчетов, относящихся к окружностям и круглым телам, заставили уже в глубокой древности искать для 241 приближений с помощью рациональных чисел. Сведения о том, что окружность ровно втрое длиннее диаметра, находятся в клинописных табличках Древнего Междуречья. Такое же значение числа p есть и в тексте Библии: «И сделал литое из меди море, – от края до края его десять локтей, – совсем круглое, вышиною в пять локтей, и снурок в тридцать локтей обнимал его кругом» (3 Цар. 7. 23). Так же считали и древние китайцы. Но уже во 2 тыс. до н.э. древние египтяне пользовались более точным значением числа 241, которое получается из формулы для площади круга диаметра d :

Этому правилу из 50-й задачи папируса Райнда соответствует значение 4(8/9) 2 » 3,1605. Папирус Райнда, найденный в 1858, назван так по имени его первого владельца, его переписал писец Ахмес около 1650 до н.э., автор же оригинала неизвестен, установлено только, что текст создавался во второй половине 19 в. до н.э. Хотя каким образом египтяне получили саму формулу, из контекста неясно. В так называемом Московском папирусе, который был переписан неким учеником между 1800 и 1600 до н.э. с более древнего текста, примерно 1900 до н.э., есть еще одна интересная задача о вычислении поверхности корзины «с отверстием 4½». Неизвестно, какой формы была корзина, но все исследователи сходятся во мнении, что и здесь для числа p берется то же самое приближенное значение 4(8/9) 2 .

Чтобы понять, каким образом древние ученые получили тот или иной результат, нужно попытаться решить задачу, используя только знания и приемы вычислений того времени. Именно так поступают исследователи старинных текстов, однако решения, которые им удается найти, вовсе не обязательно «те самые». Очень часто для одной задачи предлагается несколько вариантов решения, каждый может выбрать себе по вкусу, однако никто не может утверждать, что именно им пользовались в древности. Относительно площади круга кажется правдоподобной гипотеза А.Е.Раик, автора многочисленных книг по истории математики: площадь круга диаметра d сравнивается с площадью описанного вокруг него квадрата, из которого по очереди удаляются малые квадраты со сторонами и (рис. 1). В наших обозначениях вычисления будут выглядеть так: в первом приближении площадь круга S равна разности между площадью квадрата со стороной d и суммарной площадью четырех малых квадратов А со стороной d :

В пользу этой гипотезы свидетельствуют аналогичные вычисления в одной из задач Московского папируса, где предлагается сосчитать

С 6 в. до н.э. математика стремительно развивалась в Древней Греции. Именно древнегреческие геометры строго доказали, что длина окружности пропорциональна ее диаметру (l = 2 p R ; R – радиус окружности, l – ее длина), а площадь круга равна половине произведения длины окружности и радиуса:

S = ½ l R = p R 2 .

Эти доказательства приписывают Евдоксу Книдскому иАрхимеду .

В 3 в. до н.э. Архимед в сочинении Об измерении круга вычислил периметры вписанных в окружность и описанных около нее правильных многоугольников (рис. 2) – от 6- до 96-угольника. Таким образом он установил, что число p находится между 3 10/71 и 3 1/7, т.е. 3,14084 < p < 3,14285. Последнее значение до сих пор используется при расчетах, не требующих особой точности. Более точное приближение 3 17/120 (p » 3,14166) нашел знаменитый астроном, создатель тригонометрии Клавдий Птолемей (2 в.), но оно не вошло в употребление.

Индийцы и арабы полагали, что p = . Это значение приводит так же и индийский математик Брахмагупта (598 – ок. 660). В Китае ученые в 3 в. использовали значение 3 7/50, которое хуже приближения Архимеда, но во второй половине 5 в. Цзу Чун Чжи (ок. 430 – ок. 501) получил для p приближение 355/113 (p » 3,1415927). Оно осталось неизвестно европейцам и было вновь найдено нидерландским математиком Адрианом Антонисом только в 1585. Это приближение дает ошибку лишь в седьмом десятичном знаке.

Поиски более точного приближения p продолжались и в дальнейшем. Например, аль-Каши (первая половина 15 в.) в Трактате об окружности (1427) вычислил 17 десятичных знаков p . В Европе такое же значение было найдено в 1597 году. Для этого ему пришлось вычислять сторону правильного 800 335 168-угольника. Нидерландский ученый Лудольф Ван Цейлен (1540–1610) нашел для него 32 правильных десятичных знака (опубликовано посмертно в 1615), это приближение называется лудольфовым числом.

Число p появляется не только при решении геометрических задач. Со времени Ф.Виета (1540–1603) разыскание пределов некоторых арифметических последовательностей, составляемых по простым законам, приводило к тому же числу p . В связи с этим в определении числа p принимали участие почти все известные математики: Ф.Виет, Х.Гюйгенс , Дж.Валлис, Г.В.Лейбниц , Л.Эйлер . Они получали различные выражения для 241 в виде бесконечного произведения, суммы ряда, бесконечной дроби.

Например, в 1593 Ф.Виет (1540–1603) вывел формулу

В 1658 англичанин Уильям Броункер (1620–1684) нашел представление числа p в виде бесконечной непрерывной дроби

однако неизвестно, как он пришел к этому результату.

В 1665 Джон Валлис (1616–1703) доказал, что

Эта формула носит его имя. Для практического нахождения числа 241 она мало пригодна, но полезна в различных теоретических рассуждениях. В историю науки она вошла как один из первых примеров бесконечных произведений.

Готфрид Вильгельм Лейбниц (1646–1716) в 1673 установил следующую формулу:

выражающую число p /4 как сумму ряда. Однако этот ряд сходится очень медленно. Чтобы вычислить p с точностью до десяти знаков, потребовалось бы, как показал Исаак Ньютон, найти сумму 5 млрд чисел и затратить на это около тысячи лет непрерывной работы.

Лондонский математик Джон Мэчин (1680–1751) в 1706, применяя формулу

получил выражение

которая до сих пор считается одной из лучших для приближенного вычисления p . Чтобы найти те же десять точных десятичных знаков, потребуется всего несколько часов ручного счета. Сам Джон Мэчин вычислил p со 100 верными знаками.

C помощью того же ряда для arctg x и формулы

значение числа p было получено на ЭВМ с точностью до ста тысяч десятичных знаков. Такого рода вычисления представляют интерес в связи с понятием случайных и псевдослучайных чисел. Статистическая обработка упорядоченной совокупности указанного количества знаков p показывает, что она обладает многими чертами случайной последовательности.

Есть несколько забавных способов запомнить число p точнее, чем просто 3,14. Например, выучив следующее четверостишие, можно без труда назвать семь десятичных знаков p :

Нужно только постараться

И запомнить все как есть:

Три, четырнадцать, пятнадцать,

Девяносто два и шесть .

(С.Бобров Волшебный двурог )

Подсчет количества букв в каждом слове следующих фраз так же дает значение числа p :

«Что я знаю о кругах?» (p » 3,1416). Эту поговорку предложил Я.И.Перельман.

«Вот и знаю я число, именуемое Пи. – Молодец!» (p » 3,1415927).

«Учи и знай в числе известном за цифрой цифру, как удачу примечать» (p » 3,14159265359).

Учитель одной из московских школ придумал строку: «Это я знаю и помню прекрасно», а его ученица сочинила забавное продолжение: «Пи многие знаки мне лишни, напрасны». Это двустишие позволяет определить 12 цифр.

А так выглядит 101 знак числа p без округления

3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679.

В наше время с помощью ЭВМ значение числа p вычислено с миллионами правильных знаков, но такая точность не нужна ни в каких вычислениях. А вот возможность аналитического определения числа ,

В последней формуле в числителе стоят все простые числа, а знаменатели отличаются от них на единицу, причем знаменатель больше числителя, если тот имеет вид 4n + 1, и меньше в противном случае.

Хотя еще с конца 16 в., т.е. с тех пор, как сформировались сами понятия рациональных и иррациональных чисел, многие ученые были убеждены в том, что p – число иррациональное, но только в 1766 немецкий математик Иоганн Генрих Ламберт (1728–1777), основываясь на открытой Эйлером зависимости между показательной и тригонометрической функциями, строго доказал это. Число p не может быть представлено в виде простой дроби, как ни были бы велики числитель и знаменатель.

В 1882 профессор Мюнхенского университета Карл Луиз Фердинанд Линдеман (1852–1939) используя результаты, полученные французским математиком Ш.Эрмитом , доказал, что p – число трансцендентное, т.е. оно не является корнем никакого алгебраического уравнения a n x n + a n– 1 x n– 1 + … + a 1 x + a 0 = 0 с целыми коэффициентами. Это доказательство поставило точку в истории древнейшей математической задачи о квадратуре круга. Тысячелетия эта задача не поддавалась усилиям математиков, выражение «квадратура круга» стало синонимом неразрешимой проблемы. А все дело оказалось в трансцендентной природе числа p .

В память об этом открытии в зале перед математической аудиторией Мюнхенского университета был установлен бюст Линдемана. На постаменте под его именем изображен круг, пересеченный квадратом равной площади, внутри которого начертана буква p .

Марина Федосова

Введение

В статье присутствуют математические формулы, поэтому для чтения перейдите на сайт для их корректного отображения. Число \(\pi \) имеет богатую историю. Данная константа обозначает отношение длины окружности к ее диаметру.

В науке число \(\pi \) используют в любых расчетах, где есть окружности. Начиная от объема банки газировки, до орбит спутников. И не только окружности. Ведь в изучении кривых линий число \(\pi \) помогает понять периодические и колебательные системы. Например, электромагнитные волны и даже музыку.

В 1706 году в книге «Новое введение в математику» британского ученого Уильяма Джонса (1675-1749 гг.) для обозначения числа 3,141592… впервые была использована буква греческого алфавита \(\pi \). Это обозначение происходит от начальной буквы греческих слов περιϕερεια — окружность, периферия и περιµετρoς — периметр. Общепринятым обозначение стало после работ Леонарда Эйлера в 1737 году.

Геометрический период

Постоянство отношения длины любой окружности к её диаметру было замечено уже давно. Жители Междуречья применяли довольно грубое приближение числа \(\pi \). Как следует из древних задач, в своих расчетах они используют значение \(\pi ≈ 3 \).

Более точное значение для \(\pi \) использовали древние египтяне. В Лондоне и Нью-Йорке хранятся две части древнеегипетского папируса, который называют «папирус Ринда». Папирус был составлен писцом Армесом примерно между 2000-1700 гг. до н.э.. Армес в своем папирусе написал, что площадь круга с радиусом \(r\) равна площади квадрата со стороной, равной \(\frac{8}{9} \) от диаметра окружности \(\frac{8}{9} \cdot 2r \), то есть \(\frac{256}{81} \cdot r^2 = \pi r^2 \). Отсюда \(\pi = 3,16\).

Древнегреческий математик Архимед (287-212 гг. до н.э.) впервые поставил задачу измерения круга на научную почву. Он получил оценку \(3\frac{10}{71} < \pi < 3\frac{1}{7}\), рассмотрев отношение периметров вписанного и описанного 96-угольника к диаметру окружности. Архимед выразил приближение числа \(\pi \) в виде дроби \(\frac{22}{7}\), которое до сих называется архимедовым числом.

Метод достаточно простой, но при отсутствии готовых таблиц тригонометрических функций потребуется извлечение корней. Кроме этого, приближение сходится к \(\pi \) очень медленно: с каждой итерацией погрешность уменьшается лишь вчетверо.

Аналитический период

Несмотря на это, до середины 17 века все попытки европейских учёных вычислить число \(\pi \) сводились к увеличению сторон многоугольника. Так например, голландский математик Лудольф ван Цейлен (1540-1610 гг.) вычислил приближенное значение числа \(\pi \) с точностью до 20-ти десятичных цифр.

На вычисление ему понадобилось 10 лет. Удваивая по методу Архимеда число сторон вписанных и описанных многоугольников, он дошел до \(60 \cdot 2^{29} \) — угольника с целью вычисления \(\pi \) с 20 десятичными знаками.

После смерти в его рукописях были обнаружены ещё 15 точных цифр числа \(\pi \). Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число \(\pi \) иногда называли «лудольфовым числом» или «константой Лудольфа».

Одним из первых, кто представил метод, отличный от метода Архимеда, был Франсуа Виет (1540-1603 гг.). Он пришел к результату , что круг, диаметр которого равен единице, имеет площадь:

\[\frac{1}{2 \sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}} } \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} \cdots }}}} \]

С другой стороны, площадь равна \(\frac{\pi}{4} \). Подставив и упростив выражение, можно получить следующую формулу бесконечного произведения для вычисления приближенного значения \(\frac{\pi}{2} \):

\[\frac{\pi}{2} = \frac{2}{\sqrt{2}} \cdot \frac{2}{\sqrt{2 + \sqrt{2}}} \cdot \frac{2}{\sqrt{2+ \sqrt{2 + \sqrt{2}}}} \cdots \]

Полученная формула представляет собой первое точное аналитическое выражение для числа \(\pi \). Кроме этой формулы, Виет, используя метод Архимеда, дал с помощью вписанных и описанных многоугольников, начиная с 6-угольника и заканчивая многоугольником с \(2^{16} \cdot 6 \) сторонами приближение числа \(\pi \) с 9 правильными знаками.

Английский математик Уильям Броункер (1620-1684 гг.), используя цепную дробь , получил следующие результаты вычисления \(\frac{\pi}{4}\):

\[\frac{4}{\pi} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \frac{9^2}{2 + \frac{11^2}{2 + \cdots }}}}}} \]

Данный метод вычисления приближения числа \(\frac{4}{\pi} \) требует довольно больших вычислений, чтобы получить хотя бы небольшое приближение.

Получаемые в результате подстановки значения то больше, то меньше числа \(\pi \), и каждый раз все ближе к истинному значению, но для получения значения 3,141592 потребуется совершить довольно большие вычисления.

Другой английский математик Джон Мэчин (1686-1751 гг.) в 1706 году для вычисления числа \(\pi \) со 100 десятичными знаками воспользовался формулой, выведенной Лейбницем в 1673 году, и применил её следующим образом:

\[\frac{\pi}{4} = 4 arctg\frac{1}{5} — arctg\frac{1}{239} \]

Ряд быстро сходится и с его помощью можно вычислить число \(\pi \) с большой точностью. Формулы подобного типа использовались для установки нескольких рекордов в эпоху компьютеров.

В XVII в. с началом периода математики переменной величины наступил новый этап в вычислении \(\pi \). Немецкий математик Готфрид Вильгельм Лейбниц (1646-1716 гг.) в 1673 году нашел разложение числа \(\pi \), в общем виде его можно записать следующим бесконечным рядом:

\[ \pi = 1 — 4(\frac{1}{3} + \frac{1}{5} — \frac{1}{7} + \frac{1}{9} — \frac{1}{11} + \cdots) \]

Ряд получается при подстановке x = 1 в \(arctg x = x — \frac{x^3}{3} + \frac{x^5}{5} — \frac{x^7}{7} + \frac{x^9}{9} — \cdots\)

Леонард Эйлер развивает идею Лейбница в своих работах, посвященных использованию рядов для arctg x при вычислении числа \(\pi \). В трактате «De variis modis circuli quadraturam numeris proxime exprimendi» (О различных методах выражения квадратуры круга приближенными числами), написанном в 1738 году, рассматриваются методы усовершенствования вычислений по формуле Лейбница.

Эйлер пишет о том, что ряд для арктангенса будет сходиться быстрее, если аргумент будет стремиться к нулю. Для \(x = 1\) сходимость ряда очень медленная: для вычисления с точностью до 100 цифр необходимо сложить \(10^{50}\) членов ряда. Ускорить вычисления можно, уменьшив значение аргумента. Если принять \(x = \frac{\sqrt{3}}{3}\), то получается ряд

\[ \frac{\pi}{6} = artctg\frac{\sqrt{3}}{3} = \frac{\sqrt{3}}{3}(1 — \frac{1}{3 \cdot 3} + \frac{1}{5 \cdot 3^2} — \frac{1}{7 \cdot 3^3} + \cdots) \]

По утверждению Эйлера, если мы возьмем 210 членов этого ряда, то получим 100 верных знаков числа. Полученный ряд неудобен, потому что необходимо знать достаточно точное значение иррационального числа \(\sqrt{3} \). Также Эйлер в своих вычислениях использовал разложения арктангенсов на сумму арктангенсов меньших аргументов :

\[где x = n + \frac{n^2-1}{m-n}, y = m + p, z = m + \frac{m^2+1}{p} \]

Далеко не все формулы для вычисления \(\pi \), которые использовал Эйлер в своих записных книжках, были опубликованы. В опубликованных работах и записных книжках он рассмотрел 3 различных ряда для вычисления арктангенса, а также привел множество утверждений, касающихся количества суммируемых членов, необходимых для получения приближенного значения \(\pi \) c заданной точностью.

В последующие годы уточнения значения числа \(\pi \) происходили все быстрее и быстрее. Так, например, в 1794 году Георг Вега (1754-1802 гг.) определил уже 140 знаков , из который только 136 оказались верными.

Период компьютерных вычислений

XX век ознаменован совершенно новым этапом в вычислении числа \(\pi \). Индийский математик Сриниваса Рамануджан (1887-1920 гг.) обнаружил множество новых формул для \(\pi \). В 1910 году он получил формулу для вычисления \(\pi \) через разложение арктангенса в ряд Тейлора:

\[\pi = \frac{9801}{2\sqrt{2} \sum\limits_{k=1}^{\infty} \frac{(1103+26390k) \cdot (4k)!}{(4\cdot99)^{4k} (k!)^2}} .\]

При k=100 достигается точность в 600 верных цифр числа \(\pi \).

Появление ЭВМ позволило существенно увеличить точность получаемых значений за более короткие сроки. В 1949 году всего за 70 часов с помощью ENIAC группа ученых под руководством Джона фон Неймана (1903-1957 гг.) получила 2037 знаков после запятой числа \(\pi \) . Давид и Грегорий Чудновские в 1987 году получили формулу, с помощью которой смогли установить несколько рекордов в вычислении \(\pi \):

\[\frac{1}{\pi} = \frac{1}{426880\sqrt{10005}} \sum\limits_{k=1}^{\infty} \frac{(6k)!(13591409+545140134k)}{(3k)!(k!)^3(-640320)^{3k}}.\]

Каждый член ряда дает по 14 цифр. В 1989 году было получено 1 011 196 691 цифр после запятой. Данная формула хорошо подходит для вычисления \(\pi \) на персональных компьютерах. На данный момент братья являются профессорами в политехническом институте Нью-Йоркского университета.

Важным событием недавнего времени стало открытие формулы в 1997 году Саймоном Плаффом . Она позволяет извлечь любую шестнадцатеричную цифру числа \(\pi \) без вычисления предыдущих. Формула носит название «Формула Бэйли — Боруэйна — Плаффа» в честь авторов статьи, где формула была впервые опубликована. Она имеет следующий вид:

\[\pi = \sum\limits_{k=1}^{\infty} \frac{1}{16^k} (\frac{4}{8k+1} — \frac{2}{8k+4} — \frac{1}{8k+5} — \frac{1}{8k+6}) .\]

В 2006 году Саймон, используя PSLQ, получил несколько красивых формул для вычисления \(\pi \). Например,

\[ \frac{\pi}{24} = \sum\limits_{n=1}^{\infty} \frac{1}{n} (\frac{3}{q^n — 1} — \frac{4}{q^{2n} -1} + \frac{1}{q^{4n} -1}), \]

\[ \frac{\pi^3}{180} = \sum\limits_{n=1}^{\infty} \frac{1}{n^3} (\frac{4}{q^{2n} — 1} — \frac{5}{q^{2n} -1} + \frac{1}{q^{4n} -1}), \]

где \(q = e^{\pi}\). В 2009 году японские ученые, используя суперкомпьютер T2K Tsukuba System, получили число \(\pi \) c 2 576 980 377 524 десятичными знаками после запятой. Вычисления заняли 73 часа 36 минут. Компьютер был оснащен 640-ка четырех ядерными процессорами AMD Opteron, что обеспечило производительность в 95 триллионов операций в секунду.

Следующее достижение в вычислении \(\pi \) принадлежит французскому программисту Фабрису Беллару , который в конце 2009 года на своем персональном компьютере под управлением Fedora 10 установил рекорд, вычислив 2 699 999 990 000 знаков после запятой числа \(\pi \). За последние 14 лет это первый мировой рекорд, который поставлен без использования суперкомпьютера. Для высокой производительности Фабрис использовал формулу братьев Чудновских. В общей сложности вычисление заняло 131 день (103 дня расчеты и 13 дней проверка результата). Достижение Беллара показало, что для таких вычислений не обязательно иметь суперкомпьютер.

Всего через полгода рекорд Франсуа был побит инженерами Александром Йи и Сингеру Кондо. Для установления рекорда в 5 триллионов знаков после запятой числа \(\pi \) был также использован персональный компьютер, но уже с более внушительными характеристиками: два процессора Intel Xeon X5680 по 3,33 ГГц, 96 ГБ оперативной памяти, 38 ТБ дисковой памяти и операционная система Windows Server 2008 R2 Enterprise x64. Для вычислений Александр и Сингеру использовали формулу братьев Чудновских. Процесс вычисления занял 90 дней и 22 ТБ дискового пространства. В 2011 году они установили еще один рекорд , вычислив 10 триллионов десятичных знаков числа \(\pi \). Вычисления происходили на том же компьютере, на котором был поставлен их предыдущий рекорд и занял в общей сложности 371 день. В конце 2013 года Александр и Сингеру улучшили рекорд до 12,1 триллиона цифр числа \(\pi \), вычисление которых заняло у них всего 94 дня. Такое улучшение в производительности достигнуто благодаря оптимизации производительности программного обеспечения, увеличения количества ядер процессора и значительного улучшения отказоустойчивости ПО.

Текущим рекордом является рекорд Александра Йи и Сингеру Кондо, который составляет 12,1 триллиона цифр после запятой числа \(\pi \).

Таким образом, мы рассмотрели методы вычисления числа \(\pi \), используемые в древние времена, аналитические методы, а также рассмотрели современные методы и рекорды по вычислению числа \(\pi \) на компьютерах.

Список источников

  1. Жуков А.В. Вездесущее число Пи – М.:Изд-во ЛКИ, 2007 – 216 с.
  2. Ф.Рудио. О квадратуре круга, с приложением истории вопроса, составленной Ф.Рудио. / Рудио Ф. – М.: ОНТИ НКТП СССР, 1936. – 235c.
  3. Arndt, J. Pi Unleashed / J. Arndt, C. Haenel. – Springer, 2001. – 270p.
  4. Шухман, Е.В. Приближенное вычисление числа Пи с помощью ряда для arctg x в опубликованных и неопубликованных работах Леонарда Эйлера / Е.В. Шухман. — История науки и техники, 2008 – №4. – С. 2-17.
  5. Euler, L. De variis modis circuli quadraturam numeris proxime exprimendi/ Commentarii academiae scientiarum Petropolitanae. 1744 – Vol.9 – 222-236p.
  6. Шумихин, С. Число Пи. История длиною в 4000 лет / С. Шумихин, А. Шумихина. — М.: Эксмо, 2011. — 192с.
  7. Борвейн, Дж.М. Рамануджан и число Пи. / Борвейн, Дж.М., Борвейн П.Б. В мире науки. 1988 – №4. – С. 58-66.
  8. Alex Yee. Number world. Access mode: numberworld.org

Понравилось?

Расскажи

История числа "пи"

История числа p, выражающего отношение длины окружности к её диаметру, началась в Древнем Египте . Площадь круга диаметром d египетские математики определяли как (d-d/9) 2 (эта запись дана здесь в современных символах). Из приведенного выражения можно заключить, что в то время число p считали равным дроби (16/9) 2 , или 256/81 , т.е. p = 3,160...
В священной книге джайнизма (одной из древнейших религий , существовавших в Индии и возникшей в VI в. до н.э.) имеется указание, из которого следует, что число p в то время принимали равным, что даёт дробь 3,162...
Древние греки Евдокс, Гиппократ и другие измерение окружности сводили к построению отрезка, а измерение круга - к построению равновеликого квадрата. Следует заметить, что на протяжении многих столетий математики разных стран и народов пытались выразить отношение длины окружности к диаметру рациональным числом.

Архимед в III в. до н.э. обосновал в своей небольшой работе "Измерение круга" три положения:

    Всякий круг равновелик прямоугольному треугольнику, катеты которого соответственно равны длине окружности и её радиусу;

    Площади круга относятся к квадрату, построенному на диаметре, как 11 к 14 ;

    Отношение любой окружности к её диаметру меньше 3 1/7 и больше 3 10/71 .

Последнее предложение Архимед обосновал последовательным вычислением периметров правильных вписанных и описанных многоугольников при удвоении числа их сторон. Сначала он удвоил число сторон правильных описанного и вписанного шестиугольников, затем двенадцатиугольников и т.д., доведя вычисления до периметров правильного вписанного и описанного многоугольников с 96 сторономи. По точным расчётам Архимеда отношение окружности к диаметру заключено между числами 3*10/71 и 3*1/7 , а это означает, чтоp = 3,1419... Истинное значение этого отношения 3,1415922653...
В V в. до н.э. китайским математиком Цзу Чунчжи было найдено более точное значение этого числа:3,1415927...
Впервой половине XV в. обсерватории Улугбека , возле Самарканда , астроном и математик ал-Каши вычислил p с 16 десятичными знаками. Он сделал 27 удвоений числа сторон многоугольников и дошёл до многоугольника, имеющего 3*2 28 углов. Ал-Каши произвёл уникальные расчёты, которые были нужны для составления таблицы синусов с шагом в 1" . Эти таблицы сыграли важную роль в астрономии.
Спустя полтора столетия в Европе Ф.Виет нашёл число p только с 9 правильными десятичными знаками, сделав 16 удвоений числа сторон многоугольников. Но при этом Ф.Виет первым заметил, что p можно отыскать, исользуя пределы некоторых рядов. Это открытие имело большое значение , так как позволило вычислить p с какой угодно точностью. Только через 250 лет после ал-Каши его результат был превзойдён.
Первым ввёл обозначение отношения длины окружности к диаметру современным символом p английский математик У.Джонсон в 1706 г. В качестве символа он взял первую букву греческого слова "periferia" , что в переводе означает "окружность" . Введённое У.Джонсоном обозначение стало обшеупотребительным после опубликования работ Л.Эйлера , который воспользовался введённым символом впервые в 1736 г.
В конце XVIII в. А.М.Лажандр на основе работ И.Г.Ламберта доказал, что число p иррационально. Затем немецкий математик Ф.Линдеман , опираясь на исследования Ш.Эрмита , нашёл строгое доказательство того, что это число не только иррационально, но и трансцендентно, т.е. не может быть корнем алгебраического уравнения. Из последнего следует, что с помощью только циркуля и линейки построить отрезок, равный по длине окружности, н е в о з м о ж н о , а следовательно, не существует решения задачи о квадратуре круга.
Поиски точного выражения p продолжались и после работ Ф.Виета . В начале XVII в. голландский математик из Кёльна Лудольф ван Цейлен (1540-1610) (некоторое историки его называют Л.ван Кейлен) нашёл 32 правильных знака. С тех пор (год публикации 1615) значение числа p с 32 десятичными знаками получило название числа Лудольфа .
К концу XIX в., после 20 лет упорного труда , англичанин Вильям Шенкс нашёл 707 знаков числа p . Однако в 1945 г. обнаружено с помощью ЭВМ, что Шенкс в своих вычислениях допустил ошибку в 520-м знаке и дальнейшие его вычисления оказались неверными.
После разработки методов дифференциального и интегрального исчисления было найдено много формул, которые содержат число "пи". Некоторые из этих формул позволяют вычислить "пи" приёмами, отличными от метода Архимеда и более рациональными. Например, к числу "пи" можно прийти, отыскивая пределы некоторых рядов. Так, Г.Лейбниц (1646-1716) получил в 1674 г. ряд

1-1/3+1/5-1/7+1/9-1/11+... =p /4 ,

который дал возможность вычислить p более коротким путём, нежели Архимед . Всё же указанный ряд сходится очень медленно и поэтому требует довольно продолжительных расчётов. Для вычисления "пи" удобнее использовать ряд, получаемый от разложения arctgx при значении x =1/ , при котором разложение функции arctg 1/=p /6 в ряд даёт равенство

p /6 = 1/ ,
т.е.
p = 2

Частично суммы этого ряда можно вычислять по формуле

S n+1 = S n + (2)/(2n+1) * (-1/3) n ,

при этом "пи" будет ограничено двойным неравенством:

Ещё более удобную формулу для вычисления p получил Дж.Мачин . Пользуясь этой формулой, он вычислил p (в 1706 г.) с точностью до 100 верных знаков. Хорошее приближение для "пи" даёт выражение

Однако следует помнить, что это равенство надо рассматривать как приближённое, т.к. правая часть его - число алгебраическое, а левая - трансцендентное, следовательно, эти числа равными быть не могут.
Как указала в своих статьях Э.Я.Бахмутская (60-ые годы XX столетия), ещё в XV-XVI вв. южноиндийские учёные, в том числе Нилаканта , пользуясь приёмами приближённых вычислений числа p , нашли способ разложения arctgx в степенной ряд, подобный ряду, найденному Лейбницем . Индийские математики дали словесную формулировку правил для разложения в ряды синуса и косинуса . Этим они предвосхитили открытие европейских математиков XVII в. Тем не менее их изолированные и ограниченные практическими потребностями вычислительные работы никакого влияния на дальнейшее развитие науки не оказали.
В наше время труд вычислителей заменили ЭВМ. С их помощью число "пи" вычислено с точностью более миллиона знаков после запятой, причём эти вычисления продолжались только несколько часов.
В современной математике число p - это не только отношение длины окружности к диаметру, оно входит в большое число различных формул, в том числе и в формулы неевклидовой геометрии, и формулу Л.Эйлера , которая устанавливает связь числа p и числа e следующим образом:

e 2 p i = 1 , где i = .

Эта и другие взаимозависимости позволили математикам ещё глубже выяснить природу числа p .

14 марта во всем мире отмечают весьма необычный праздник – день числа Пи. Еще со школьной скамьи оно всем известно. Учащимся сразу объясняют, что число Пи - это математическая константа, отношение длины окружности к ее диаметру, которая имеет бесконечное значение. Оказывается, что с этим числом связано немало любопытных фактов

1. История числа насчитывает не одно тысячелетие, почти столько, сколько существует наука математика. Конечно, точное значение числа рассчитали не сразу. Поначалу отношение длины окружности к диаметру считали равным 3. Но с течением времени, когда начала развиваться архитектура, потребовалось более точное измерение. Кстати, число существовало, а вот буквенное обозначение оно получило только в начале XVIII века (1706 год) и происходит от начальных букв двух греческих слов, означающих «окружность» и «периметр». Буквой "π" число наделил математик Джонс, а прочно вошла в математику она уже в 1737 году.

2. В разные эпохи и у разных народов число Пи имело разное значение . Например, в Древнем Египте оно равнялось 3,1604, у индусов оно приобрело значение 3,162, китайцы пользовались числом, равным 3,1459. С течением времени π рассчитывали все точнее, а когда появилась вычислительная техника, то есть компьютер, оно стало насчитывать более 4 миллиардов знаков.

3. Есть легенда, точнее так считают специалисты, что число Пи использовали при строительстве Вавилонской башни . Однако не гнев божий стал причиной ее обрушения, а неправильные расчеты при строительстве. Мол, древние мастера ошиблись. Подобная версия существует касательно храма Соломона.

4. Примечательно, что значение числа Пи пытались вводить даже на уровне государства, то есть посредством закона. В 1897 году в штате Индиана подготовили билль. Согласно документуПи равнялось 3,2. Однако ученые вовремя вмешались и предотвратили таким образом ошибку. В частности, против билля выступил профессор Пердью, присутствовавший на законодательном собрании.

5. Интересно, что свое имя имеют несколько чисел в бесконечной последовательности Пи. Так, шесть девяток числа Пи носят имя американского физика. Как-то Ричард Фейнман читал лекцию и ошарашил публику замечанием. Он сказал, что хотел бы наизусть выучить цифры числа Пи до шести девяток только для того, чтобы под конец рассказа произнести шесть раз «девять», намекая на то, что его значение рационально. Тогда как на самом деле оно иррационально.

6. Математики всего мира не прекращают вести исследования, связанные с числом Пи. Оно буквально окутано некой тайной. Некоторые теоретики даже полагают, что в нем заключена вселенская истина. Чтобы обмениваться знаниями и новой информацией о Пи, организовали Пи-клуб. Вступить в него непросто, нужно иметь незаурядную память. Так, желающих стать членом клуба экзаменуют: человек должен по памяти рассказать как можно больше знаков числа Пи.

7. Придумали даже различные техники для запоминания числа Пи после запятой. Например, придумывают целые тексты. В них слова имеют то же количество букв, что и соответствующая цифра после запятой. Чтобы еще упростить запоминание такого длинного числа, сочиняют стихи по тому же принципу. Члены Пи-клуба частенько развлекаются таким образом, а заодно тренируют память и сообразительность. Например, такое хобби было у Майка Кейта, который восемнадцать лет назад придумал рассказ, каждое слово в котором равнялось почти четырем тысячам (3834) первых знаков числа Пи.

8. Есть даже люди, поставившие рекорды по запоминанию знаков Пи. Так, в Японии Акира Харагучи наизусть выучил больше восьмидесяти трех тысяч знаков. А вот отечественный рекорд не такой выдающийся. Житель Челябинска сумел наизусть произнести только две с половиной тысячи чисел после запятой числа Пи.

"Пи" в перспективе

9. День числа Пи отмечают больше четверти века, с 1988 года. Однажды физик из научно-популярного музея в Сан-Франциско Ларри Шоу заметил, что 14 марта по написанию совпадает с числом Пи. В дате месяц и число образуют 3.14.

10. День числа Пи отмечают не то чтобы оригинально, но весело. Конечно, не пропускают его ученые, занимающие точными науками . Для них это - способ не отрываться от любимого дела, а заодно расслабиться. В этот день люди собираются и готовят разные вкусности с изображением Пи. Особенно есть где разгуляться кондитерам. Они могут делать торты с надписями в виде числа «пи» и печенье похожей формы. Отведав лакомства, математики устраивают разные викторины.

11. Есть любопытное совпадение. 14 марта родился великий ученый Альберт Эйнштейн, создавший, как известно, теорию относительности. Как бы то ни было, физики тоже могут присоединиться к празднованию Дня числа Пи.

Число пи - математическая константа, равная отношению длины окружности к ее диаметру. Число пи является, цифровое представление которого является бесконечной непериодической десятичной дробью - 3,141592653589793238462643... и так до бесконечности.

    100 знаков после запятой: 3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679.

История уточнения значения числа пи

В каждой книге по занимательной математике вы непременно найдете историю уточнения значения числа пи. Сначала, в древних Китае, Египте, Вавилоне и Греции для расчетов использовали дроби, например, 22/7 или 49/16. В Средние века и эпоху Возрождения европейские, индийские и арабские математики уточнили значение пи до 40 знаков после десятичной точки, а к началу компьютерной эпохи усилиями многих энтузиастов количество знаков было доведено до 500.

Такая точность имеет чисто академический интерес (об этом ниже), а для практических нужд в пределах Земли достаточно 10 знаков после запятой. При радиусе Земли 6400 км или 6,4·10 9 мм, получится, что, отбросив двенадцатую цифру пи после запятой, мы при вычислении длины меридиана, ошибемся на несколько миллиметров. А при расчете длины земной орбиты вокруг Солнца (ее радиус 150 млн км = 1,5·10 14 мм) для такой же точности достаточно использовать число пи с четырнадцатью знаками после запятой. Среднее расстояние от Солнца до Плутона - самой далекой планеты Солнечной системы - в 40 раз больше среднего расстояния от Земли до Солнца. Для вычисления длины орбиты Плутона с ошибкой в несколько миллиметров достаточно шестнадцати знаков пи. Да что уж там мелочиться, диаметр нашей Галактики около 100 тыс. световых лет (1 световой год примерно равен 10 13 км) или 10 19 мм, а ведь еще в XVII веке были получены 35 знаков пи, избыточные даже для таких расстояний.

В чем же сложность вычисления значения числа пи? Дело в том, что оно не только иррациональное, то есть, его нельзя выразить в виде дроби p/q, где p и q целые числа. Такие числа нельзя записать точно, их можно вычислять только методом последовательных приближений, увеличивая число шагов для получения большей точности. Самый простой путь - рассматривать вписанные в окружность правильные многоугольники со все возрастающим числом сторон и вычислять отношение периметра многоугольника к его диаметру. С ростом числа сторон, это отношение стремиться к числу пи. Именно так в 1593 году Адриан ван Ромен вычислил периметр вписанного правильного многоугольника с 1073741824 (т.е. 2 30) сторонами и определил 15 знаков пи. В 1596 году Лудольф ван Цейлен получил 20 знаков, рассчитав вписанный многоугольник с 60·2 33 сторонами. Впоследствии он довел вычисления до 35 знаков.

Другой путь вычисления пи - использование формул с бесконечным числом членов. Например:

π = 2 · 2/1 · (2/3 · 4/3) · (4/5 · 6/5) · (6/7 · 8/7) · ...

π = 4 · (1/1 - 1/3) + (1/5 - 1/7) +(1/9 - 1/11) + ...

Подобные формулы можно получить, раскладывая, например, арктангенс в ряд Маклорена, зная, что

arctg(1) = π/4 (поскольку что tg(45°) = 1)

или раскладывая в ряд арксинус, зная, что

arcsin(1/2) = π/6 (катет, лежащий против угла в 30°).

В современных расчетах применяются еще более эффективные методы . С их помощью на сегодня.

День числа пи

День числа пи отмечается некоторыми математиками 14 марта в 1:59 (в американской системе записи дат - 3/14; первые разряды числа π = 3,14159). Обычно празднуют в 1:59 дня (в 12-часовой системе), но придерживающиеся 24-часовой системы света времени считают, что это 13:59, и предпочитают отмечать ночью. В это время читают хвалебные речи в честь числа пи, его роли в жизни человечества, рисуют антиутопические картины мира без пи, едят пи-рог (pie ), пьют напитки и играют в игры, начинающиеся на «пи».

  • Пи (число) - Википедия

Прежде чем рассказывать об истории числа Пи , отметим, что число Пи - это одна из самых загадочных величин математики. В этом Вы сейчас убедитесь сами, мой дорогой читатель...

Начнём наш рассказ с определения. Итак, число Пи - отвлеченное число , обозначающее соотношение длины окружности к длине её диаметра. Это определение знакомо нам ещё со школьной скамьи. Но вот дальше уже начинаются загадки...

Вычислить до конца эту величину невозможно, она равна 3,1415926535 , далее после запятой – до бесконечности. Учёные считают, что последовательность цифр не повторяется, причём эта последовательность абсолютно случайна...

Загадка числа Пи на этом не заканчивается. Астрономы уверены, что тридцать девять знаков после запятой в данном числе достаточно для того, что вычислить длину окружности, которая опоясывает известные космические объекты во Вселенной, с погрешностью в радиус атома водорода…

иррационально , т.е. его нельзя выразить дробью. Эта величина трансцедентна – т.е. её нельзя получить, произведя какие-либо действия над целыми числами….

Число Пи тесно связано с понятием золотого сечения. Археологи выяснили, что высота Великой Пирамиды в Гизе относится к длине её основания, именно также как радиус окружности к её длине…


История числа П так же остаётся загадкой. Известно, что ещё строители использовали эту величину для проектирования. Сохранились, возрастом в несколько тысяч лет, которые содержали задачи, решение которых предусматривало использование числа Пи. Однако мнение о точном значении этой величины среди учёных разных стран было неоднозначным. Так в городе Сузы, расположенном в двустах километрах от Вавилона, была найдена табличка, где число Пи указывалось как 3 ¹/8 . В Древнем Вавилоне было обнаружено, что радиус окружности в качестве хорды входит в неё шесть раз, именно там впервые было предложено поделить круг на 360 градусов. Отметим к слову, что аналогичное геометрическое действие было сделано и с орбитой Солнца, что навело древних учёных на мысль, что в году должно быть примерно 360 дней. Однако, вот в Египте число Пи было равно 3,16 , а в древней Индии – 3, 088 , в древней Италии – 3,125 . же считал, что эта величина равна дроби 22/7 .

Наиболее точно число Пи было вычислено китайским астроном Цзу Чунь Чжи в V веке н.э . Для этого он дважды написал нечётные числа 11 33 55, затем разделил их пополам, первую часть поместил в знаменатель дроби, а вторую часть – в числитель, таким образом получилась дробь 355/113 . Что удивительно, значение совпадает с современными вычислениями вплоть до седьмого знака…

Кто же дал первое официальное название этой величине?

Считается, что в 1647 году математик Оутрейд назвал греческой буквой π длину окружности, взяв для этого первую букву греческого слова περιφέρεια - «периферия» . Но в 1706 году вышла работа английского преподавателя Ульяма Джонса «Обозрение достижений математики», в которой он обозначал буквой Пи уже отношение длины окружности к её диаметру. Окончательно данный символ был закреплён в XX веке математиком Леонардом Эйлером .

С тех пор, как у людей появилась возможность считать и они начали исследовать свойства абстрактных объектов, называемых числами, поколения пытливых умов совершали завораживающие открытия. По мере того как наши знания о числах увеличивались, некоторые из них привлекали особое внимание , а некоторым даже придавали мистические значения. Был, который обозначает ничего, и который при умножении на любое число дает себя. Была, начало всего, также обладающая редкостными свойствами, простые числа. Затем обнаружили, что существуют числа, которые не являются целыми, а иногда получаются в результате деления двух целых чисел, - числа рациональные. Иррациональные числа, которые не могут быть получены как отношение целых чисел, и т.д. Но если и есть число, которое очаровало и вызвало написание массы трудов, то это (пи). Число, которое, несмотря на долгую историю, не называли так, как мы называем его сегодня, до восемнадцатого века.

Начало

Число пи получается делением длины окружности на ее диаметр. При этом размер окружности не важен. Большая или маленькая, отношение длины к диаметру одно и то же. Хотя вполне вероятно, что это свойство было известно ранее, самые первые свидетельства об этом знании - Московский математический папирус 1850 г. до н.э. и папирус Ахмеcа 1650 г. до н.э. (хотя это копия более старого документа). В нем имеется большое количество математических задач, в некоторых из которых приближается как, что чуть более чем на 0,6\% отличается от точного значения. Примерно в это же время вавилоняне считали равным. В Ветхом Завете, написанном более десяти столетий спустя, Яхве не усложняет жизнь и божественным указом устанавливает, что в точности равно.

Однако великими исследователями этого числа были древние греки, такие как Анаксагор, Гиппократ из Хиоса и Антифон из Афин. Ранее значение определялось, почти наверняка, с помощью экспериментальных измерений. Архимед был первым, кто понял, как теоретически оценить его значение. Использование описанного и вписанного многоугольников (больший описан около окружности, в которую вписан меньший) позволило определить, что больше и меньше. С помощью метода Архимеда другие математики получили лучшие приближения, и уже в 480 г. Цзу Чунчжи определил, что значения находится между и. Тем не менее метод многоугольников требует много вычислений (напомним, что все делалось вручную и не в современной системе счисления), так что у него не было будущего.

Представления

Нужно было дождаться XVII века, когда с открытием бесконечного ряда свершилась революция в вычислении, хотя первый результат не был рядом, это было произведение. Бесконечные ряды - это суммы бесконечного числа членов, образующих некоторую последовательность (например, все числа вида, где принимает значения от до бесконечности). Во многих случаях сумма конечна и может быть найдена различными методами. Оказывается, что некоторые из этих рядов сходятся к или некоторой величине, имеющей отношение к. Для того чтобы ряд сходился, необходимо (но не достаточно), чтобы с ростом суммируемые величины стремились к нулю. Таким образом, чем больше чисел мы складываем, тем точнее мы получаем значение. Теперь у нас есть две возможности получения более точного значения. Или сложить больше чисел, или найти другой ряд, сходящийся быстрее, так чтобы складывать меньшее количество чисел.

Благодаря этому новому подходу точность вычисления резко возросла, и в 1873 году Уильям Шенкс опубликовал результат многолетней работы, приведя значение с 707 десятичными знаками. К счастью, он не дожил до 1945 года, когда было обнаружено, что он сделал ошибку и все цифры, начиная с, были неправильными. Тем не менее, его подход был наиболее точным до появления компьютеров. Это была предпоследняя революция в вычислении. Математические операции, которые при выполнении их вручную занимают несколько минут, в настоящее время выполняются в доли секунды, причем ошибки практически исключены. Джону Ренчу и Л. Р. Смиту удалось вычислить 2000 цифр за 70 часов на первом электронном компьютере. Барьер в миллион цифр был достигнут в 1973 году.

Последнее (на данный момент) достижение в вычислении - открытие итерационных алгоритмов, которые сходятся к быстрее, чем бесконечные ряды, так что можно достичь намного более высокой точности при той же вычислительной мощности. Текущий рекорд составляет чуть более 10 триллионов верных цифр. Зачем же так точно вычислять? Учитывая, что, зная 39 цифр этого числа, можно вычислить объем известной Вселенной с точностью до атома, не за чем… пока.

Некоторые интересные факты

Однако вычисление значения является лишь малой частью его истории. Это число обладает свойствами, благодаря которым эта константа столь любопытна.

Возможно, самой большой проблемой, связанной с, является известная задача о квадратуре круга, задача о построении с помощью циркуля и линейки квадрата, площадь которого равна площади данного круга. Квадратура круга мучила поколения математиков в течение двадцати четырех столетий, пока фон Линдеман не доказал, что - трансцендентное число (оно не является решением никакого полиномиального уравнения с рациональными коэффициентами) и, следовательно, невозможно объять необъятное. До 1761 г. не было доказано, что число иррациональное, то есть что не существует двух натуральных чисел и таких, что. Трансцендентность не была доказана до 1882 года, однако пока неизвестно, являются ли числа или (- это еще одно иррациональное трансцендентное число) иррациональными. Появляется много соотношений, которые не связаны с окружностями. Это часть коэффициента нормализации нормальной функции, видимо, наиболее широко используемой в статистике. Как уже упоминалось ранее, число появляется как сумма многих рядов и равно бесконечным произведениям, оно важно и при изучении комплексных чисел. В физике его можно найти (в зависимости от применяемой системы единиц) в космологической постоянной (самая большая ошибка Альберта Эйнштейна) или константе постоянного магнитного поля. В системе счисления с любым основанием (в десятичной, двоичной…), цифры проходят все тесты на случайность, не наблюдается никакого порядка или последовательности. Дзета-функция Римана тесно связывает число с простыми числами. Это число имеет долгую историю и наверняка до сих пор хранит множество сюрпризов.

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «НОВОАГАНСКАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ CРЕДНЯЯ ШКОЛА №2»

История возникновения

числа Пи.

Выполнила Шевченко Надежда,

ученица 6 «Б» класса

Руководитель: Чекина Ольга Александровна, учитель математики

пгт. Новоаганск

2014

План.

  1. Ведение.

Цели.

II. Основная часть.

1)Первый шаг к числу пи.

2)Не разгаданная загадка.

3)Интересные факты.

III. Заключение

Использованная литература.

Введение


Цели моей работы

1)Найти историю происхождения пи.

2)Рассказать интересные факты числа пи

3)Сделать презентацию и оформить доклад.

4) Подготовить выступление на конференцию.

Основная часть.

Пи (π) - буква греческого алфавита, применяемая в математике для обозначения отношения длины окружности к диаметру. Это обозначение происходит от начальной буквы греческих слов περιφέρεια - окружность, периферия и περίμετρος - периметр. Оно стало общепринятым после работы Л. Эйлера, относящейся к 1736г., однако впервые оно было употреблено английским математиком У. Джонсом (1706г.). Как и всякое иррациональное число, π представляется бесконечной непериодической десятичной дробью:

π = 3,141592653589793238462643.

Первый шаг в изучении свойств числа π сделал Архимед. В сочинении «Измерение круга» он вывел знаменитое неравенство: [формула]
Это означает, что π лежит в интервале длиной 1/497. В десятичной системе счисления получаются три правильных значащих цифры: π = 3,14…. Зная периметр правильного шестиугольника и последовательно удваивая число его сторон, Архимед вычислил периметр правильного 96-угольника, откуда и следует неравенство. 96-угольник визуально мало отличается от окружности и является хорошим приближением к ней.
В том же сочинении, последовательно удваивая число сторон квадрата, Архимед нашел формулу площади круга S = π R2. Позднее он дополнил ее также формулами площади сферы S = 4 π R2 и объема шара V = 4/3 π R3.

В древнекитайских трудах попадаются самые разные оценки, из которых самая точная - это известное китайское число 355/113. Цзу Чунчжи (V век) даже считал это значение точным.
Лудольф ван Цейлен (1536-1610) затратил десять лет на вычисление числа π с 20-ю десятичными цифрами (этот результат был опубликован в 1596 году). Применив метод Архимеда, он довёл удвоение до n-угольника, где n=60·229. Изложив свои результаты в сочинении «Об окружности», Лудольф закончил его словами: «У кого есть охота, пусть идёт дальше». После смерти в его рукописях были обнаружены ещё 15 точных цифр числа π. Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число π иногда называли «лудольфовым числом».

Но загадка таинственного числа не разрешена вплоть до сегодняшнего дня, хотя по-прежнему волнует ученых. Попытки математиков полностью вычислить всю числовую последовательность часто приводят к курьезным ситуациям. Например, математики братья Чудновские в Политехническом Университете Бруклина специально с этой целью сконструировали суперскоростной компьютер. Однако установить рекорд им не удалось – пока рекорд принадлежит японскому математику Ясумаса Канада, который смог вычислить 1,2 биллиона чисел бесконечной последовательности.

Интересные факты
Неофициальный праздник «День числа Пи» отмечается 14 марта, которое в американском формате дат (месяц/день) записывается как 3/14, что соответствует приближённому значению числа Пи.
Ещё одной датой, связанной с числом π, является 22 июля, которое называется «Днём приближённого числа Пи», так как в европейском формате дат этот день записывается как 22/7, а значение этой дроби является приближённым значением числа π.
Мировой рекорд по запоминанию знаков числа π принадлежит японцу Акира Харагути (Akira Haraguchi). Он запомнил число π до 100-тысячного знака после запятой. Ему понадобилось почти 16 часов, чтобы назвать всё число целиком.
Германский король Фридрих Второй был настолько очарован этим числом, что посвятил ему… целый дворец Кастель дель Монте, в пропорциях которого можно вычислить Пи. Сейчас волшебный дворец находится под охраной ЮНЕСКО.

Заключение
В настоящее время с числом π связано труднообозримое множество формул, математических и физических фактов. Их количество продолжает стремительно расти. Всё это говорит о возрастающем интересе к важнейшей математической константе, изучение которой насчитывает уже более двадцати двух веков.

Мою работу можно использовать на уроках математики.

Итоги моей работы:

  1. Нашла историю происхождения числа пи.
  2. Рассказала о интересных фактах числа пи.
  3. Узнала много нового о числе пи.
  4. Оформила работу и Выступила на конференции.


Похожие статьи