Сцепленное наследование. Хромосомная теория наследственности

Формы взаимодействия неаллельных генов (межаллельное взаимодействие)

Эти гены могут располагаться в разных локусах гомологичных хромосом или в негомологичных хромосомах, обычно отвечают за развитие разных признаков.

Комплементарность (лат. комплементум – дополнение) - присутствие в одном генотипе двух доминантных (рецессивных) генов, которые дополняют действие друг друга, и признак формируется лишь при одновременном действии обоих генов.

Пример: развитие слуха у человека. Для нормального слуха в генотипе человека должны присутствовать доминантные гены из разных аллельных пар –D и E. Ген D отвечает за нормальное развитие улитки, а ген E – за развитие слухового нерва. У рецессивных гомозигот (dd) будет недоразвита улитка, а при генотипе (ее) недоразвит слуховой нерв. Люди с генотипами D..ee, ddE.. и ddee будут глухими.

Эпистаз – такой вид взаимодействия, при котором доминантный (рецессивный) ген из одной аллельной пары подавляет действие доминантного (рецессивного) гена из другой аллельной пары. Соответственно эпистаз может быть как доминантным таки рецессивным. Это явление противоположно комплементарности. Подавляющий ген называется супрессором, ингибитором, эпистатичным. Подавляемый ген – гипостатичным. У человека описан «бомбейский феномен» в наследовании групп крови по АВО системе. У женщины получившей от матери аллель J B фенотипически определялась I(О) группа крови. При детальном исследовании было установлено, что действие гена J B было подавлено редким рецессивным геном, который в гомозиготном состоянии оказал эпистатическое действие.

Полимерия – доминантные гены из разных аллельных пар влияют на степеньпроявления одного и тогоже признака. Полимерные гены принято обозначать одной буквой латинского алфавита с цифровыми индексами. Так у человека количество пигмента меланина в коже (и, следовательно, цвет кожи) определяется четырьмя неаллельными генами: Р 1 - Р 4 . Соответственно темно-коричневый цвет кожи будут иметь люди с генотипом Р 1 Р 1 Р 2 Р 2 Р 3 Р 3 Р 4 Р 4 . Самому светлому цвету кожи соответствует генотип р 1 р 1 - р 4 р 4 . Промежуточные варианты будут определять различную интенсивность пигментации: Например, человек с большим количеством доминантных генов в генотипе будет иметь более темную кожу. Признаки, детерминируемые полимерными генами, называются полигенными, для них свойственен большой диапазон изменчивости, т.е. широкая норма реакции. Таким образом, наследуются многие количественные и некоторые качественные признаки – рост, масса тела, величина артериального давления.

Основные закономерности наследо­вания признаков по Менделю реализуются благодаря сущест­вованию закона (гипотезы) чистоты гамет , выдвинутого Г. Менделем в 1865г.

Суть последнего состоит в том, что пара ал­лельных генов, определяющая тот или иной признак: а) никогда не смешива­ется; б) в процессе гаметогенеза расхо­дится в разные гаметы, то есть в каж­дую из них попадает один ген из аллельной пары. Цитологически это обеспечивается мейозом: аллельные гены лежат в гомологичных хромосо­мах, которые в анафазе мейоза расхо­дятся к разным полюсам и попадают в разные гаметы.

II. Дигибридное скрещивание

Ранее мы изучали закономерности наследования 1 признака (моногибридное скрещивание)

В общей и медицинской генетике часто возникает необходимость в изучении одновременного наследования двух или более признаков (ди- и полигибридное скрещивание). Если каждый их этих признаков контролируются парой аллельных генов, то можно предположить существование двух форм наследования: независимого и сцепленного. Принципиальные отличия будут определяться расположением генов в хромосомах. При сцепленном наследовании обе пары аллельных генов располагаются в одной паре гомологичных хромосом (т.е. в одной группе сцепления). При независимом наследовании пары аллельных генов располагаются в разных парах гомологичных хромосом.

Закономерности и механизмы независимого наследования были выявлены и сформулированы Г.Менделем в 3-м законе «Закон независимого комбинирования признаков»: при скрещивании гомозиготных организмов, отличающихся по двум (или более) парам альтернативных признаков, в первом поколении наблюдается единообразие по гено- и фенотипу, а при скрещивании гибридов первого поколения – во втором наблюдается расщепление по фенотипу 9:3:3:1, и при этом возникают организмы с комбинациями признаков, не свойственных родительским формам».

Для этой цели Мендель использовал гомозиготные растения гороха, отличающиеся по двум парам альтернативных признаков: семена желтые, гладкие и зеленые, морщинистые. В первом скрещивании он получил АаВb растения с желтыми, гладкими семенами, т.е закон единообразия гибридов первого поколения проявляется не только при моногибридном, но и полигибридном скрещивании, если родительские формы гомозиготны.

P: ААВВ х ааbb

G: АВ, АВ аb, ab

F 1 : АаВb

P (F 1 ): АаВb х АаВb

ААВВ

АаВВ

АаВВ

ааВВ

F 2 : 9: 3: 3: 1

9 частей растений с горошинами желтыми, гладкими, три части с желтыми морщинистыми, 3 с зелеными гладкими, и 1часть с зелеными, морщинистыми, (3+1) n - расщепление по фенотипу, где n- число анализируемых признаков.

Возникают организмы с новыми комбинациями признаков, не свойственных родительским формам.

Условия выполнения закона:

Признаки наследуются моногенно (наследование по каждой паре идет независимо)

Форма взаимодействия аллельных генов – полное доминирование

Пары аллельных генов располагаются в разных парах гомологичных хромосом

У человека независимо наследуются цвет глаз и цвет волос.

Причины разнообразия гибридов:

Независимое расхождение пар хромосом в анафазу I мейоза (приводит к образова-

нию гамет с различными комбинациями неаллельных генов)

Случайное слияние гамет при оплодотворении (возникают различные комбинации

генов в генотипах потомков, которые определяют комбинацию признаков)

Новые комбинации генов в генотипах потомков приводят к возникновению у них новых комбинаций признаков – главный вывод 3-го закона.

В 1908г. Сэттон и Пеннет обнаружили отклонения от свободного комбинирования признаков согласно IIIзакону Менделя. В 1911-12г. Т.Морган с сотр. Описалиявление сцепления генов – совместную передачу группы генов из поколения в поколение.

У дрозофилы гены окраски тела (b+ - серое тело,b– черное тело) и длины крыльев (vg+ - нормальные крылья,vg– короткие крылья), находятся в одной хромосоме, это сцепленные гены находящиеся в одной группе сцепления. Если скрестить двух гомозиготных особей с альтернативными признаками, то в первом поколении, все гибриды будут иметь одинаковый фенотип с проявлениями доминантных признаков (серое тело, нормальные крылья).

Это не противоречит закону единообразия гибридов Iпоколения Г.Менделя. Однако при дальнейшем скрещивании гибридов первого поколения между собой вместо ожидаемого расщепления по фенотипу 9:3:3:1, при сцепленном наследовании происходило расщепление в отношении 3:1, появились особи только с признаками родителей, а особей с перекомбинацией признаков не было.

Это связано с тем, что в мейозе гаметогенеза к полюсам клетки расходятся целые хромосомы. Одна хромосома из данной гомологичной пары и все гены, которые находятся в ней, отходят к одному полюсу и в дальнейшем попадают в одну гамету. Другая хромосома из данной пары отходит к противоположному полюсу и попадает в другую гамету. Совместное наследование генов находящихся в одной хромосоме, называется сцепленным наследованием.

Примером полного сцепления генов у человека может служить наследование резус фактора. Наличие резус-фактора обусловлено тремя сцепленными меду собой генами, поэтому наследование его происходит по типу моногибридного скрещивания.

Однако гены, находящиеся в одной хромосоме, иногда могут наследоваться раздельно, в этом случае говорят о неполном сцеплении генов

Продолжая свои работы по дигибридному скрещиванию, Морган провел два опыта по анализирующему скрещиванию и выявил, что сцепление генов может быть полным и неполным.

Причина неполного сцепления генов – кроссинговер. В мейозе при конъюгации гомологичные хромосомы могут перекрещиваться и обмениваться гомологичными участками. В этом случае гены одной хромосомы переходят в другую, гомологичную ей.

В период роста гаметогенеза происходит редупликация ДНК, генетическая характеристика овоциов и сперматоцитов Iпорядка 2n4c, каждая хромосома состоит из двух хроматид, которые содержат идентичный набор ДНК. В профазу редукционного деленя мейоза происходит коньюгация гомологичных хромосом и может произойти обмен аналогичными участками гомологичных хромосом –кроссинговер. В анафазу редукционного деления к полюсам расходятся целые гомологичные хромосомы, после завершения деления образуются клеткиn2c– овоциты и сперматоцитыIIпорядка. В анафазу эквационного деления расходятся хроматиды –nc, но при этом они отличаются комбинацией неаллельных генов.Новые комбинации неаллельных генов – генетический эффект кроссинговера. → новые комбинации признаков у потомков → комбинативная изменчивость.

Чем ближе друг к другу расположены гены в хромосоме, тем сильнее между ними сцепление и тем реже происходит их расхождение при кроссинговере, и, наоборот, чем дальше друг от друга отстоят гены, тем слабее сцепление между ними и тем чаще возможно его нарушение.

полное сцепление Схема кроссинговера

Количество разных типов гамет будет зависеть от частоты кроссинговера или расстояния между анализируемыми генами. Расстояние между генами исчисляется в морганидах: единице расстояния между генами, находящимися в одной хромосоме, соответствует 1% кроссинговера. Такая зависимость между расстояниями и частотой кроссинговера прослеживается только до 50 морганид.

Теоретической основой Закономерностей сцепленного наследования являются положенияХромосомной теории наследствен­ности , которая была сформулирована и экспе­риментально доказана Т. Морганом и его сотрудниками в1911г. Ее сущность заключается в следующем:

Основным материальным носителем наследственности являются хромосомы с локализованными в них генами;

Гены расположены в хромосомах в линейном порядке в определенных локусах, аллельные гены занимают одинаковые локусы гомологичных хромосом.

Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются преимущественно вместе (или сцеплено); число групп сцепления равно гаплоидному набору хромосом.

Во время гаметогенеза (профаза I мейоза) может происходить обмен аллельными

генами - кроссинговер, который нарушает сцепления генов.

Частота кроссинговера пропорциональна расстоянию между генами. 1морганида – единица расстояния, равная 1% кроссинговера.

Данная теория дала объяснение законам Менделя, вскрыла цитологические основы наследования признаков.

Явление сцепления генов лежит в основе составления генетических карт хромосом – схемы относительного положения генов, находящихся в одной группе сцепления. Методы картирования хромосом направлены на то, чтобы узнать в какой хромосоме, и в каком ее локусе (месте) расположен ген, а также определить расстояние между соседними генами

Это отрезок прямой, на котором обозначен порядок расположения генов и указано расстояние между ними в морганидах, строится по результатам анализирующего скрещивания. Чем чаще признаки наследуются вместе, тем ближе гены, отвечающие за эти признаки, располагаются в хромосоме. Другими словами, о расположении генов в хромосоме можно судить по особенностям проявления признаков в фенотипе.

При анализе сцепления генов у животных и растений используется гибридологический метод, у человека – генеалогический метод, цитогенетический, а также метод гибридизации соматических клеток.

Цитологическая карта хромосомы представляет собой фотографию или точный рисунок хромосомы, на котором отмечается последовательность расположения генов. Ее строят на основе сопоставления результатов анализирующего скрещивания и хромосомных перестроек.

При котором один ген обуславливает развитие нескольких признаков. Продукт фактически каждого гена участвует как правило в нескольких, а иногда и в очень многих процессах, образующих метаболическую сеть организма. характерна для генов, кодирующих сигнальные белки. Ген, обуславливающий рыжие волосы, обуславливает более светлую окраску кожи и появление веснушек.

2. Теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, то есть преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом. Анализ явлений сцепленного наследования, кроссинговера, сравнение генетической и цитологической карт позволяют сформулировать основные положения хромосомной теории наследственности:

Гены локализованы в хромосомах. При этом различные хромосомы содержат неодинаковое число генов. Кроме того, набор генов каждой из негомологичных хромосом уникален.

Аллельные гены занимают одинаковые локусы в гомологичных хромосомах.

Гены расположены в хромосоме в линейной последовательности.

Гены одной хромосомы образуют группу сцепления, то есть наследуются преимущественно сцепленно (совместно), благодаря чему происходит сцепленное наследование некоторых признаков. Число групп сцепления равно гаплоидному числу хромосом данного вида (у гомогаметного пола) или больше на 1 (у гетерогаметного пола).

Сцепление нарушается в результате кроссинговера, частота которого прямо пропорциональна расстоянию между генами в хромосоме (поэтому сила сцепления находится в обратной зависимости от расстояния между генами).

Каждый биологический вид характеризуется определенным набором хромосом - кариотипом.

3. К хромосомным относятся болезни, обусловленные геномными мутациями или структурными изменениями отдельных хромосом. Хромосомные болезни возникают в результате мутаций в половых клетках одного из родителей. Из поколения в поколение передаются не более 3-5 % из них. Хромосомными нарушениями обусловлены примерно 50 % спонтанных абортов и 7 % всех мертворождений.

Болезни, обусловленные нарушением числа аутосом (неполовых) хромосом:

синдром Дауна - трисомия по 21 хромосоме

синдром Патау - трисомия по 13 хромосоме

синдром Эдвардса - трисомия по 18 хромосоме.

Болезни, связанные с нарушением числа половых хромосом:

синдром Шерешевского-Тернера - отсутствие одной Х-хромосомы у женщин (45 ХО)

синдром Кляйнфельтера - полисомия по X- и Y-хромосомам у мальчиков (47, XXY; 47, XYY, 48, XXYY и др.)

Генные болезни – это большая группа заболеваний, возникающих в результате повреждения ДНК на уровне гена.

фенилкетонурия - нарушение превращения фенилаланина в тирозин

синдром Марфана («паучьи пальцы», арахнодактилия) - поражение соединительной ткани вследствие мутации в гене

гемолитические анемии - снижение уровня гемоглобина и укорочением срока жизни эритроцитов;

профилактика

Медико-генетическое консультирование: прогнозагенетической полноценности потомства консультациях в отношении заключения брака

амниоцентез – получение амниотической жидкости и клеток плода с помощью прокола плодного пузыря операции под контролем УЗИ – простейшей, не травмирующей плод хирургической. Этим методом диагностируют многие хромосомные болезни и некоторые заболевания, в основе которых лежат генные мутации. плацентобиопсия (на 12-й неделе) – отбор материала из плаценты.

4.Популяционно-статистический метод дает возможность рассчитать в популяции частоту встречаемости нормальных и патологических генов, определить соотношение гетерозигот – носителей аномальных генов. С помощью данного метода определяется генетическая структура популяции (частоты генов и генотипов в популяциях человека); частоты фенотипов; исследуются факторы среды, изменяющие генетическую структуру популяции. В основе метода лежит закон Харди–Вайнберга, в соответствии с которым частоты генов и генотипов в многочисленных популяциях, обитающих в неизменных условиях, и при наличии панмиксии (свободных скрещиваний) на протяжении ряда поколений остаются постоянными. Вычисления производятся по формулам: р + q = 1, р2 + 2pq + q2 = 1. При этом р – частота доминантного гена (аллеля) в популяции, q – частота рецессивного гена (аллеля) в популяции, р2 – частота гомозигот доминантных, q2 – гомозигот рецессивных, 2pq – частота гетерозиготных организмов. Используя этот метод, можно также определять частоту носителей патологических генов.

5. 1) кариотип47, XXY

2) Синдром Клайнфельтера, характерны высокий рост, длинные конечности и относительно короткое туловище, евнухоидизм, бесплодие, гинекомастия, повышенное выделение женских половых гормонов, склонность к ожирению.

3) обусловливается нерасхождением хромосом в мейозе в процессе гематогенеза

Вариант 9

1.Закон расщепления, или второй закон Менделя: при моногибридном скрещивании во втором поколении гибридов наблюдается расщепление по фенотипу в соотношении 3:1: около 3/4 гибридов второго поколения имеют доминантный признак, около 1/4 - рецессивный.

Скрещиванием организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства , часть которого несет доминантный признак, а часть - рецессивный, называется расщеплением. Следовательно, расщепление - это распределение доминантных и рецессивных признаков среди потомства в определенном числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении

Мейоз создает также возможности для возникновения в гаметах новых комбинаций генов, что является причиной появления новых признаков у потомства. Этому способствуют:

случайное слияние яйцеклетки и сперматозоида при оплодотворении;

кроссинговер в профазе первого деления мейоза;

независимое расхождение гомологичных хромосом в анафазе первого деления мейоза;

независимое расхождение хроматид в анафазе второго деления мейоза.

2. Сцепление не бывает абсолютным, может нарушаться, в результате чего возникают новые гаметы и аВ Аb с новыми комбинациями генов, отличающимися от родительской гаметы. Причина нарушения сцепления и возникновения новых гамет - кроссинговер - перекрест хромосом в профазе мейоза I (рис. 9), Перекрест и обмен участками гомологичных хромосом приводит к возникновению качественно новых хромосом и, следовательно, к постоянной "перетасовке" - рекомбинации генов. Чем дальше друг от друга расположены гены в хромосоме, тем выше вероятность перекреста между ними и тем больший процент гамет с рекомбинированными генами, а следовательно, и больший процент особей, отличных от родителей.

3. Мутационная изменчивость - изменчивость, вызванная действием на организм мутагенов, вследствие чего возникают мутации (реорганизация репродуктивных структур клетки). Мутагены бывают физические (радиационное излучение), химические (гербициды) и биологические (вирусы). Возникают внезапно, и мутировать может любая часть организма, т.е. они не направлены.

Оба родителя в равной мере передают признак детям

Аутосомно-рецессивный

Признак может отсутствовать в поколении детей но присутствовать в поколении внуков

Может проявляться у детей при отсутствии у родителей

Наследуется всеми детьми если оба родителя имеют его

Наследуется мужчинами и женщинами одинаково частоъ


  1. 1)47, XXX.
2) Синдром трипло Х состояние пограничное между нормой и патологией. часто отмечается недоразвитие яичников бесплодие. Незначительное снижение интеллекта.

Вариант 5.

1. Комплементарность в генетике - форма взаимодействия неаллельных генов, при котором одновременное действие нескольких доминантных генов дает новый признак. Существует не менее трех типов комплементарности:

Доминантные гены различаются по фенотипическому проявлению;

Доминантные гены имеют сходное фенотипическое проявление;

И доминантные, и рецессивные гены имеют самостоятельное фенотипическое проявление.

Если доминантные аллели двух генов обусловливают разный фенотип, то в F, наблюдается расшепление 9:3:3:1. В качестве примера данного типа взаимодействия генов можно привести наследование формы гребня у кур.

У гибридов первого поколения доминантные гены А и В дополняют друг друга и вместе обусловливают ореховидную форму гребня, которой не было у родительских форм. При скрещивании гибридов F1: AaBb x AaBb во втором поколении, наряду с ореховидной, розовидной и гороховидной появляется простая форма гребня в соотношении: 9 А_ B_ : 3 А_ bb: 3 аа В: 1 аа bb («_» означает, что аллель в гомологичной хромосоме может быть как доминантным, так и рецессивным). В отличие от менделевского расщепления, наблюдаемого во втором поколении дигибридного скрещивания, в данном случае в первом поколении два гена действуют на один признак.

2. Наследственные болезни возникают

вследствие изменения наследственного аппарата клетки (мутаций), которые

вызываются лучевой, тепловой энергией, химическими веществами и биологическими

факторами. Ряд мутаций вызывается генетическими рекомбинациями, несовершенством

процессов репарации, возникает в результате ошибок биосинтеза белков и

нуклеиновых кислот.Мутации затрагивают как соматические,

так и половые клетки. Различают геномные, генные мутации и хромосомные

аберрации.

Пренатальная (дородовая) диагностика

Биопсия хориона: хорион -специальные ворсинки на конце пуповины, которые соединяют ее со стенкой матки, в него с помощью шприца насасывается очень небольшое количество хориональной ткани. эта ткань исследуется в лаборатории разными методами.

Амниоцентез

путем прокола брюшной стенки женщины. Через иглу в шприц набирают околоплодную жидкость. Кроме диагностики хромосомных и генных болезней возможно также:

Определение степени зрелости легких плода

Определение кислородного голодания плода

Определение тяжести резус-конфликта между матерью и плодом

Плацентоцентез и кордоцентез

взятие кусочка плаценты (при плацентоцентезе) или пуповинной крови плода (при кордоцентезе).

Ультразвуковое исследование (УЗИ)

3. Изменчивость (биологическая), разнообразие признаков и свойств у особей и групп особей любой степени родства. Изменчивость присуща всем живым организмам, поэтому в природе отсутствуют особи, идентичные по всем признакам и свойствам. Термин «Изменчивость» употребляется также для обозначения способности живых организмов отвечать морфофизиологическими изменениями на внешние воздействия и для характеристики преобразований форм живых организмов в процессе их эволюции.

Изменчивость можно классифицировать в зависимости от причин, природы и характера изменений, а также целей и методов исследования.

Различают изменчивость: наследственную (генотипическую) и ненаследственную (паратипическую); индивидуальную и групповую; прерывистую (дискретную) и непрерывную; качественную и количественную; независимую изменчивость разных признаков и коррелятивную (соотносительную); направленную (определенную, по Ч.Дарвину) и ненаправленную (неопределенную, по Ч.Дарвину); адаптивную (приспособительную) и неадаптивную. При решении общих проблем биологии и особенно эволюции наиболее существенно подразделение изменчивости, с одной стороны, на наследственную и ненаследственную, а с другой - на индивидуальную и групповую. Все категории изменчивости могут встречаться в наследственной и ненаследственной, групповой и индивидуальной изменчивости.

Наследственная изменчивость обусловлена возникновением разных типов мутаций и их комбинаций в последующих скрещиваниях. В каждой достаточно длительно (в ряде поколений) существующей совокупности особей спонтанно и ненаправленно возникают различные мутации , которые в дальнейшем комбинируются более или менее случайно с разными уже имеющимися в совокупности наследственными свойствами. Изменчивость, обусловленную возникновением мутаций, называют мутационной , а обусловленную дальнейшим перекомбинированием генов в результате скрещивания -- комбинационной . На наследственной изменчивости основано все разнообразие индивидуальных различий, которые включают:

16Модификационная изменчивость Модификационная изменчивость не вызывает изменений генотипа, она связана с реакцией данного, одного и того же генотипа на изменение внешней среды: в оптимальных условиях выявляется максимум возможностей, присущих данному генотипу. Так, продуктивность беспородных животных в условиях улучшенного содержания и ухода повышается (надои молока, нагул мяса). В этом случае все особи с одинаковым генотипом отвечают на внешние условия одинаково (Ч. Дарвин этот тип изменчивости назвал определенной изменчивостью). Однако другой признак -- жирность молока -- слабо подвержен изменениям условий среды, а масть животного -- еще более устойчивый признак. Модификационная изменчивость обычно колеблется в определенных пределах. Степень варьирования признака у организма, то есть пределы модификационной изменчивости, называется нормой реакции . Широкая норма реакции свойственна таким признакам, как удои молока, размеры листьев, окраска у некоторых бабочек; узкая норма реакции -- жирности молока, яйценоскости у кур, интенсивности окраски венчиков у цветков и другое. Фенотип формируется в результате взаимодействий генотипа и факторов среды. Фенотипические признаки не передаются от родителей потомкам, наследуется лишь норма реакции, то есть характер реагирования на изменение окружающих условий. У гетерозиготных организмов при изменении условий среды можно вызвать различные проявления данного признака.
Свойства модификаций: 1) ненаследуемость; 2) групповой характер изменений; 3) соотнесение изменений действию определенного фактора среды; 4) обусловленность пределов изменчивости генотипом.

Лекц и я № 3

Хромосомная теория наследственности.

Основные положення хромосомной теории наследственности. Хромосомный анализ.

Формирование хромосомной теории. В 1902-1903 гг. американский цитолог У. Сеттон и немецкий цитолог и эмбриолог Т. Бовери независимо друг от друга выявили параллелизм в поведении генов и хромосом в ходе формирования гамет и оплодотворения. Эти наблюдения послужили основой для предположения, что гены расположены в хромосомах. Однако экспериментальное доказательство локализации конкретных генов в конкретных хромосомах было получено только в 1910 г. американским генетиком Т. Морганом, который в последующие годы (1911-1926) обосновал хромосомную теорию наследственности. Согласно этой теории, передача наследственной информации связана с хромосомами, в которых линейно, в определенной последовательности, локализованы гены. Таким образом, именно хромосомы представляют собой материальную основу наследственности.

Хромосомная теория наследственности - теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, то есть преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом. Хромосомная теория наследственности возникла в начале 20 в. на основе клеточной теории и использовалась для изучения наследственных свойств организмов гибридологического анализа.

Основные положения хромосомной теории наследственности.

1. Гены локализованы в хромосомах. При этом различные хромосомы содержат неодинаковое число генов. Кроме того, набор генов каждой из негомологичных хромосом уникален.

2. Аллельные гены занимают одинаковые локусы в гомологичных хромосомах.

3. Гены расположены в хромосоме в линейной последовательности.

4. Гены одной хромосомы образуют группу сцепления, то есть наследуются преимущественно сцепленно (совместно), благодаря чему происходит сцепленное наследование некоторых признаков. Число групп сцепления равно гаплоидному числу хромосом данного вида (у гомогаметного пола) или больше на 1 (у гетерогаметного пола).

5. Сцепление нарушается в результате кроссинговера, частота которого прямо пропорциональна расстоянию между генами в хромосоме (поэтому сила сцепления находится в обратной зависимости от расстояния между генами).

6. Каждый биологический вид характеризуется определенным набором хромосом - кариотипом .

Сцепленное наследование

Независимое комбинирование признаков (третий закон Менделя) осуществляется при условии, что гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом. Следовательно, у каждого организма число генов, способных независимо комбинироваться в мейозе, ограничено числом хромосом. Однако в организме число генов значительно превышает количество хромосом. Например, у кукурузы до эры молекулярной биологии было изучено более 500 генов, у мухи дрозофилы - более 1 тыс., а у человека - около 2 тыс. генов, тогда как хромосом у них 10, 4 и 23 пары соответственно. То, что число генов у высших организмов составляет несколько тысяч, было ясно уже У. Сэттону в начале XX века. Это дало основание предположить, что в каждой хромосоме локализовано множество генов. Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются вместе.

Совместное наследование генов Т. Морган предложил назвать сцепленным наследованием . Число групп сцепления соответствует гаплоидному числу хромосом, поскольку группу сцепления составляют две гомологичные хромосомы, в которых локализованы одинаковые гены. (У особей гетерогаметного пола, например, у самцов млекопитающих, групп сцепления на самом деле на одну больше, так как X- и У-хромосомы содержат разные гены и представляют собой две разные группы сцепления. Таким образом, у женщин 23 группы сцепления, а у мужчин - 24).

Способ наследования сцепленных генов отличается от наследования генов, локализованных в разных парах гомологичных хромосом. Так, если при независимом комбинировании дигетерозиготная особь образует четыре типа гамет (АВ, Ab, аВ и ab) в равных количествах, то при сцепленном наследовании (в отсутствие кроссинговера) такая же дигетерозигота образует только два типа гамет: (АВ и ab) тоже в равных количествах. Последние повторяют комбинацию генов в хромосоме родителя.

Было установлено, однако, что кроме обычных (некроссоверных) гамет возникают и другие (кроссоверные) гаметы с новыми комбинациями генов- Ab и аВ, отличающимися от комбинаций генов в хромосомах родителя. Причиной возникновения таких гамет является обмен участками гомологичных хромосом, или кроссинговер .

Кроссинговер происходит в профазе I мейоза во время конъюгации гомологичных хромосом. В это время части двух хромосом могут перекрещиваться и обмениваться своими участками. В результате возникают качественно новые хромосомы, содержащие участки (гены) как материнских, так и отцовских хромосом. Особи, которые получаются из таких гамет с новым сочетанием аллелей, получили название кроссинговерных или рекомбинантных.

Частота (процент) перекреста между двумя генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Кроссинговер между двумя генами происходит тем реже, чем ближе друг к другу они расположены. По мере увеличения расстояния между генами все более возрастает вероятность того, что кроссинговер разведет их по двум разным гомологичным хромосомам.

Расстояние между генами характеризует силу их сцепления. Имеются гены с высоким процентом сцепления и такие, где сцепление почти не обнаруживается. Однако при сцепленном наследовании максимальная частота кроссинговера не превышает 50 %. Если же она выше, то наблюдается свободное комбинирование между парами аллелей, не отличимое от независимого наследования.

Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым повышать наследственную изменчивость , которая дает широкие возможности адаптации организма в различных условиях среды. Человек специально проводит гибридизацию с целью получения необходимых вариантов комбинаций для использования в селекционной работе .

Сцепление и кроссинговер. Из принципов генетического анализа, изложенных в преды­дущих главах, с очевидностью вытекает, что независимое комбинирование признаков может осуществляться лишь при условии, что гены, определяющие эти признаки, находятся в негомологичных хромосомах. Следовательно, у каждого организма число пар признаков, по которым наблюдается независимое наследование, ограничено числом пар хромосом. С другой стороны, оче­видно, что число признаков и свойств организма, контролируемых генами, чрезвычайно велико, а число пар хромосом у каждого вида относительно мало и постоянно.

Остается предположить, что в каждой хромосоме находится не один ген, а много. Если это так, то третий закон Менделя касается распределения хромосом, а не генов, т. е. его действие ограничено.

Явление сцепленного наследования . Из третьего закона Менделя следует, что при скрещивании форм, различающихся двумя парами генов (АВ и а b ), получается гибрид А a В b , образующий четыре сорта гамет АВ, А b , аВ и а b в равных количествах.

В соответствии с этим в анализирующем скрещивании осуществляется расщепление 1: 1: 1: 1, т.е. сочетания признаков, свойственные родительским формам (АВ и а b ), встречаются с такой же частотой, как и новые комбинации b и аВ),- по 25%. Однако по мере накопления фактов генетики все чаще стали сталкиваться с отклонениями от независимого наследования. В отдельных случаях новые комбинации признаков b и аВ) в F b совсем отсутствовали - наблюдалось полное сцепление между генами исходных форм. Но чаще в потомстве в той или иной степени преобладали родительские сочетания признаков, а новые комбинации встречались с меньшей частотой, чем ожидается при независимом наследовании, т.е. меньше 50%. Таким образом, в данном случае гены чаще наследовались в исходном сочетании (были сцеплены), но иногда это сцепление нарушалось, давая новые комбинации.

Совместное наследование генов, ограничивающее их свобод­ное комбинирование, Морган предложил называть сцеплением генов или сцепленным наследованием.

Кроссинговер и его генетическое доказательство. При допущении размещения в одной хромосоме более одного гена встает вопрос, могут ли аллели одного гена в гомологичной паре хромосом меняться местами, перемещаясь из одной гомологичной хромосомы в другую. Если бы такой процесс не происходил, то гены комбинировались бы только путем случайного расхождения негомологичных хромосом в мейозе, а гены, находящиеся в одной паре гомологичных хромосом, наследовались бы всегда сцепленно - группой.

Исследования Т.Моргана и его школы показали, что в гомологичной паре хромосом регулярно происходит обмен генами. Процесс обмена идентичными участками гомологичных хромосом с содержащимися в них генами называют перекрестом хромосом или кроссинговером. Кроссинговер обеспечивает новые сочетания генов, находящихся в гомологичных хромосомах. Явление кроссинговера, так же как и сцепление, оказалось общим для всех животных, растений и микроорганизмов. Наличие обмена идентичными участками между гомологичными хромосомами обеспечивает обмен или рекомбинацию генов и тем самым значительно увеличивает роль комбинативной изменчивости в эволюции. О перекресте хромосом можно судить по частоте возникновения организмов с новым сочетанием признаков. Такие организмы называют рекомбинантами.

Гаметы с хромосомами, претерпевшими кроссинговер, называют кроссоверными, а с непретерпевшими - некроссоверными. Соответственно организмы, возникшие от сочетания кроссоверных гамет гибрида с гаметами анализатора, называют кроссоверами или рекомбинантами, а возникшие за счет некроссоворных гамет гибрида - некроссоверными или нерекомбинантными.

Закон сцепления Моргана. При анализе расщепления в случае кроссинговера обращает на себя внимание определенное коли­чественное отношение кроссоверных и некроссоверных классов. Обе исходные родительские комбинации признаков, образовавшиеся из некроссоверных гамет, оказываются в потомстве анали­зирующего скрещивания в равном количественном отношении. В указанном опыте с дрозофилой тех и других особей было примерно по 41,5%. В сумме некроссоверные мухи составили 83% от общего числа потомков. Два кроссоверных класса по числу особей также одинаковы, и сумма их равна 17%.

Частота кроссинговера не зависит от аллельного состояния генов, участвующих в скрещивании. Если в качестве родителя использовать мух и , то в анализирующем скрещивании кроссоверные (b + vg и bvg + ) и некроссоверные (bvg и b + vg + ) особи появятся с той же частотой (соответственно 17 и 83%), что и в первом случае.

Результаты этих опытов показывают, что сцепление генов реально существует, и лишь в известном проценте случаев оно нарушается вследствие кроссинговера. Отсюда и был сделан вывод, что между гомологичными хромосомами может осуществляться взаимный обмен идентичными участками, в результате чего гены, находящиеся в этих участках парных хромосом, перемещаются из одной гомологичной хромосомы в другую. Отсутствие перекреста (полное сцепление) между генами представляет исключение и известно лишь у гетерогаметного пола немногих видов, например у дрозофилы и шелкопряда.

Изученное Морганом сцепленное наследование признаков получило название закона сцепления Моргана. Поскольку рекомбинация осуществляется между генами, а сам ген кроссинговером не разделяется, его стали считать единицей кроссинговера.

Величина кроссинговера . Величина кроссинговера измеряется отношением числа кроссоверных особей к общему числу особей в потомстве от анализирующего скрещивания. Рекомбинация происходит реципрокно, т.е. между родительскими хромосомами осуществляется взаимный обмен; это обязывает подсчитывать кроссоверные классы вместе как результат одного события. Величина кроссинговера выражается в процентах. Один процент кроссинговера составляет единицу расстояния между генами.

Линейное расположение генов в хромосоме. Т. Морган предположил, что гены расположены в хромосомах линейно, а частота кроссинговера отражает относительное расстояние между ними: чем чаще осуществляется кроссинговер, тем далее отстоят гены друг от друга в хромосоме; чем реже кроссинговер, тем они ближе друг к другу.

Одним из классических опытов Моргана на дрозофиле, доказывающим линейное расположение генов, был следующий. Самки, гетерозиготные по трем сцепленным рецессивным генам, определяющим желтую окраску тела y , белый цвет глаз w и вильчатые крылья bi , были скрещены с самцами, гомозиготными по этим трем генам. В потомстве было получено 1,2% мух кроссоверных, возникших от перекреста между генами у и w ; 3,5% − от кроссинговера между генами w и bi и 4,7% - между у и bi .

Из этих данных с очевидностью вытекает, что процент перекреста является функцией расстояния между генами. Поскольку расстояние между крайними генами у и bi равно сумме двух расстояний между у и w , w и bi , следует предположить, что гены расположены в хромосоме последовательно, т.е. линейно.

Воспроизводимость этих результатов в повторных опытах указывает на то, что местоположение генов в хромосоме строго фиксировано, т. е. каждый ген занимает в хромосоме свое опрделенное место - локус.

Основным положениям хромосомной теории наследственности - парности аллелей, их редукции в мейозе и линейному расположению генов в хромосоме - соответствует однонитчатая модель хромосомы.

Одинарный и множественный перекресты. Приняв положения, что генов в хромосоме может быть много и расположены они в хромосоме в линейном порядке, а каждый ген занимает определённый локус в хромосоме, Морган допустил, что перекрест между гомологичными хромосомами может происходить одновременно в нескольких точках. Это предположение было им доказано тоже на дрозофиле, а затем полностью подтвердилось на ряде других животных, а также на растениях и микроорганизмах.

Кроссинговер, происходящий лишь в одном месте, называют одинарным, в двух точках одновременно – двойным, в трёх – тройным и т.д., т.е. он может быть множественным.

Чем дальше отстоят друг от друга в хромосоме гены, тем больше вероятность двойных перекрестов между ними. Процент рекомбинаций между двумя генами тем точнее отражает расстояние между ними, чем оно меньше, так как в случае малого расстояния уменьшается возможность двойных обменов.

Для учета двойного кроссинговера необходимо иметь дополнительный маркер, находящийся между двумя изучаемыми генами. Определение расстояния между генами осуществляют следующим образом: к сумме процентов одинарных кроссоверных классов прибавляют удвоенный процент двойных кроссинговеров. Удвоение процента двойных кроссинговеров необходимо в связи с тем, что каждый двойной кроссинговер возни­кает благодаря двум независимым одинарным разрывам в двух точках.

Интерференция. Установлено, что кроссинговер, происшедший в одном месте хромосомы, подавляет кроссинговер в близлежащих районах. Это явление носит название интерференции. При двойном перекресте интерференция проявляется особенно сильно в случае малых расстояний между генами. Разрывы хромосом оказываются зависимыми друг от друга. Степень этой зависимо­сти определяется расстоянием между происходящими разрывами: по мере удаления от места разрыва возможность другого разрыва увеличивается.

Эффект интерференции измеряется отношением числа наблюдаемых двойных разрывов к числу возможных при допущении полной независимости каждого из разрывов.

Локализация гена. Если гены расположены в хромосоме линейно, а частота кроссинговера отражает расстояние между ними, то можно определить местоположение гена в хромосоме.

Прежде чем определить, положение гена, т. е. его локализацию, необходимо определить, в какой хромосоме находится данный ген. Гены, находящиеся в одной хромосоме и наследующиеся сцепленно, составляют группу сцепления. Очевидно, что количество групп сцепления у каждого вида должно соответствовать гаплоидному набору хромосом.

К настоящему времени группы сцепления определены у наиболее изученных в генетическом отношении объектов, причем во всех этих случаях обнаружено полное соответствие числа групп сцепления гаплоидному числу хромосом. Так, у кукурузы (Zea mays ) гаплоидный набор хромосом и число групп сцепления со­ставляют 10, у гороха (Pisum sativum ) – 7, дрозофилы (Drosophila melanogaster) – 4, домовой мыши (Mus musculus ) – 20 и т. п.

Поскольку ген занимает определенное место в группе сцепления, это позволяет устанавливать порядок расположения генов в каждой хромосоме и строить генетические карты хромосом.

Генетические карты. Генетической картой хромосом называют схему относительного расположения генов, находящихся в данной группе сцепления. Они составлены пока лишь для некоторых наиболее изученных с генетической точки зрения объектов: дрозофилы, кукурузы, томатов, мыши, нейроспоры, кишечной палочки и др.

Генетические карты составляют для каждой пары гомологичных хромосом. Группы сцепления нумеруют.

Для того, чтобы составить карты, необходимо изучить закономерности наследования большого числа генов. У дрозофилы, например, изучено более 500 генов, локализованных в четырех группах сцепления, у кукурузы - более 400 генов, локализованных в десяти группах сцепления и т.д. При составлении генетических карт указывается группа сцепления, полное или сокращенное название генов, расстояние в процентах от одного из концов хромосомы, принятого за нулевую точку; иногда обозначается место центромеры.

У многоклеточных организмов рекомбинация генов бывает реципрокной. У микроорганизмов она может быть односторонней. Так, у ряда бактерий, например у кишечной палочки (Escherichia coli ), перенос генетической информации происходит во время конъюгации клеток. Единственная хромосома бактерии, имеющая форму замкнутого кольца, рвется во время конъюгации всегда в определенной точке и переходит из одной клетки в другую.

Длина переданного участка хромосомы зависит от длительности конъюгации. Последовательность генов в хромосоме оказывается постоянной. В силу этого расстояние между генами на такой кольцевой карте измеряется не в процентах кроссинговера, а в минутах, что отражает продолжительность конъюгации.

Цитологическое доказательство кроссинговера. После того как генетическими методами удалось установить явление кроссинговера, необходимо было получить прямое доказательство обмена участками гомологичных хромосом, сопровождающегося рекомбинацией генов. Наблюдаемые в профазе мейоза картины хиазм могут служить лишь косвенным доказательством этого явления, констатация происшедшего обмена прямым наблюдением невозможна, так как обменивающиеся участками гомологичные хромосомы обычно абсолютна одинаковы но величине и форме.

Чтобы сопоставить цитологические карты гигантских хромо­сом с генетическими, Бриджес предложил воспользоваться коэффициентом кроссинговера. Для этого он разделил общую длину всех хромосом слюнных желез (1180 мкм) на общую длину генетических карт (279 единиц). В среднем это отношение оказалось равным 4,2. Следовательно, каждой единице перекреста на генетической карте соответствует 4,2 мкм на цитологической карте (для хромосом слюнных желез). Зная расстояние между генами на генетической карте какой-либо хромосомы, можно сравнить относительную частоту перекреста в разных ее районах. Например, в Х- хромосоме дрозофилы гены у и ec находятся на расстоянии 5,5%, следовательно, расстояние между ними в гигантской хромосоме должно быть 4,2 мкм Х 5,5 = 23 мкм, но непосредственное измерение дает 30 мкм. Значит, в этом рай­оне Х -хромосомы кроссинговер идет реже средней нормы.

В силу неравномерного осуществления обменов по длине хромосом гены при нанесении их на карту распределяются на ней с разной плотностью. Следовательно, распределение генов на генетических картах можно рассматривать как показатель возможности осуществления перекреста по длине хромосомы.

Механизм кроссинговера. Еще до открытия перекреста хромосом генетическими методами цитологи, изучая профазу мейоза, наблюдали явление взаимного обвивания хромосом, образования ими χ-образных фигур – хиазм (χ-греческая буква «хи»). В 1909 г. Ф.Янсенс высказал предположение, что хиазмы свя­заны с обменом участками хромосом. Впоследствии эти картины послужили дополнительным аргументом в пользу гипотезы генетического перекреста хромосом, выдвинутой Т.Морганом в 1911 г.

Механизм перекреста хромосом связан с поведением гомоло­гичных хромосом в профазе I мейоза.

Кроссинговер происходит на стадии четырех хроматид и приурочен к образованию хиазм.

Если в одном биваленте произошел не один обмен, а два и более, то и этом случае образуется несколько хиазм. Поскольку в биваленте четыре хроматиды, то, очевидно, каждая из них имеет равную вероятность обменяться участками с любой другой. При этом в обмене могут участвовать две, три или четыре хроматиды.

Обмен внутри сестринских хроматид не может приводить к рекомбинациям, поскольку они генетически идентичны, и в силу этого такой обмен не имеет смысла в качестве биологического механизма комбинативной изменчивости.

Соматический (митотический) кроссинговер. Как уже говорилось, кроссинговер происходит в профазе I мейоза при образовании гамет. Однако существует соматический, или митотический, кроссинговер, который осуществляется при митотическом делении соматических клеток главным образом эмбриональных тканей.

Известно, что гомологичные хромосомы в профазе митоза обычно не конъюгируют и располагаются независимо друг от друга. Однако иногда удается наблюдать синапсис гомологичных хромосом и фигуры, похо­жие на хиазмы, но при этом редукции числа хромосом не наблюдается.

Гипотезы о механизме кроссинговера. По поводу механизма перекреста существует несколько гипотез, но ни одна из них не объясняет полностью фактов рекомбинации генов и наблюдаемых при этом цитологических картин.

Согласно гипотезе, предложенной Ф.Янсенсом и развитой К.Дарлингтоном, в процессе синапсиса гомологичных хромосом в биваленте создается динамическое напряжение, возникающее в связи со спирализацией хромосомных нитей, а также при взаимном обвивании гомологов в биваленте. В силу этого напряжения одна из четырех хроматид рвется. Разрыв, нарушая равновесие в биваленте, приводит к компенсирующему разрыву в строго идентичной точке какой-либо другой хроматиды этого же бивалента. Затем происходит реципрокное воссоединение разорванных концов, приводящее к кроссинговеру. Согласно этой гипотезе хиазмы непосредственно связаны с кроссинговером.

По гипотезе К.Сакса хиазмы не являются результатом кроссинговера: сначала образуются хиазмы, а затем происходит обмен. При расхождении хромосом к полюсам вследствие механического напряжения в местах хиазм происходят разрывы и обмен соответствующими участками. После обмена хиазма исчезает.

Смысл другой гипотезы, предложенной Д.Беллингом и модернизированной И.Ледербергом, заключается в том, что процесс репликации ДНК может реципрокно переключаться с одной нити на другую; воспроизведение, начавшись на одной матрице, с какой-то точки переключается на матричную нить ДНК.

Факторы, влияющие на перекрест хромосом. На кроссинговер влияет множество факторов как генетической природы, так и внешней среды. Поэтому в реальном эксперименте о частоте кроссинговера можно говорить, имея в виду все те условия, в которых она была определена. Кроссинговер практически отсутствует между гетероморфными Х - и Y -хромосомами. Если бы он происходил, то хромосомный механизм определения пола постоянно разрушался бы. Блокирование кроссинговера между этими хромосомами связано не только с различием в их величине (оно наблюдается не всегда), но и обусловлено Y -специфичными нуклеотидными последовательностями. Обязательное условие синапса хромосом (или их участков) - гомология нуклеотидных последовательностей.

Для абсолютного большинства высших эукариот характерна примерно одинаковая частота кроссинговера как у гомогаметного, так и гетерогаметного полов. Однако есть виды, у которых кроссинговер отсутствует у особей гетерогаметного пола, в то время как у особей гомогаметного пола он протекает нормально. Такая ситуация наблюдается у гетерогаметных самцов дрозофилы и самок шелкопряда. Существенно, что частота митотического кроссинговера у этих видов у самцов и самок практически одинакова, что указывает на различные элементы контро­ля отдельных этапов генетической рекомбинации в половых и соматических клетках. В гетерохроматических районах, в частности прицентромерных, частота кроссинговера снижена, и поэтому истинное расстояние между генами в этих участках может быть изменено.

Обнаружены гены, выполняющие роль запирателей кроссинговера, но есть также гены, повышающие его частоту. Они иногда могут индуцировать заметное число кроссоверов у самцов дрозофилы. В качестве запирателей кроссинговера могут выступать также хромосомные перестройки, в частности инверсии. Они нарушают нормальную конъюгацию хромосом в зиготене.

Обнаружено, что на частоту кроссинговера влияют возраст организма, а также экзогенные факторы: температура, радиация, концентрация солей, химические мутагены, лекарства, гормоны. При большинстве указанных воздействий частота кроссинговера повышается.

В целом кроссинговер представляет собой один из регулярных генетических процессов, контролируемых многими генами как непосредственно, так и через физиологическое состояние мейотических или митотических клеток. Частота различных типов рекомбинаций (мейотический, митотический кроссинговер и сестринские, хроматидные обмены) может служить мерой действия мутагенов, канцерогенов, антибиотиков и др.

Законы наследования Моргана и вытекающие из них принципы наследственности. Огромную роль в создании и развитии генетики сыграли работы Т.Моргана. Он автор хромосомной теории наследственности. Им были открыты законы наследования: наследование признаков, сцепленных с полом, сцепленное наследование.

Из этих законов вытекает следующие принципы наследственности:

1. Фактор-ген есть определённый локус хромосомы.

2. Аллели гена расположены в идентичных локусах гомологичных хромосом.

3. Гены расположены в хромосоме линейно.

4. Кроссинговер – регулярный процесс обмена генами между гомологичными хромосомами.

Мобильные элементы генома. В 1948 г. американская исследовательница Мак-Клинток открыла у кукурузы гены перемещающиеся из одного участка хромосомы в другой и назвала феномен транспозицией, а сами гены контролириующими элементами (КЭ). 1.Эти элементы могут перемещаться из одного сайта в другой; 2. их встраивание в данный район влияет на активность генов расположенных рядом; 3. утрата КЭ в данном локусе превращает прежде мутабильный локус в стабильный; 4. в сайтах, в которых присутствуют КЭ, могут возникать делеции, транслокации, транспозиции, инверсии, а также разрывы хромосом. В 1983 г. за открытие мобильных генетических элементов Нобелевская премия была присуждена Барбаре Мак-Клинток.

Наличие мобильных элементов в геномах имеет разнообразные последствия:

1. Перемещения и внедрение мобильных элементов в гены может вызывать мутации;

2. Изменение состояния активности генов;

3. Формирование хромосомных перестроек;

4. Формирование теломер.

5. Участие в горизонтальном переносе генов;

6. Транспозоны на основе Р-элемента используют для трансформации у эукариот, клонирования генов, поиска энхансеров и т.д.

У прокариот существуют три типа мобильных элементов – IS-элементы (инсерции), транспозоны, и некоторые бактериофаги. IS-элементы встраиваются в любой участок ДНК, часто вызывают мутации, разрушая кодирующие или регуляторные последовательности, влияют на экспрессию соседних генов. Бактериофаг может вызывать мутации в результате встраивания.

Доминированием называется… А) совместное наследование признаков; Б) зависимость проявления признака от пола; В) наличие

у гибридов признака одного из родителей;

Г) степень выраженности признака.

Аллельными называются…

А) гены, локализованные в одной хромосоме;

Б) гены, локализованные в разных хромосомах;

В) гены, локализованные в одних и тех же локусах гомологичных хромосом;

Г) гены, локализованные в разных локусах гомологичных хромосом.

Аллель – это…

А) место гена в хромосоме;

Б) число генов в хромосоме;

В) форма существования гена;

Г) одна из хромосом гомологичной пары.

Какое количество аллелей одного гена в норме содержится в соматической клетке?

А) 1; Б) 2; В) 4; Г) 12.

Гомозиготной называется особь, …

А) имеющая две одинаковых аллели одного гена;

Б) имеющая две разные аллели одного гена;

В) имеющая большое количество аллелей одного гена;

Г) любая особь.

Аа х Аа является гетерозиготной?

А) ½; Б) 1/3; В) ¼; Г) ¾.

Какая часть гибридов от скрещивания Аа х Аа является гомозиготной?

А) ½; Б) 1/3; В) ¼; Г) ¾.

Какая часть гибридов от скрещивания Аа х Аа является гомозиготной по рецессивному признаку?

А) ½; Б) 1/3; В) ¼; Г) ¾.

Какая часть гибридов от скрещивания Аа х Аа является гомозиготной по доминантному признаку?

А) ½; Б) 1/3; В) ¼; Г) ¾.

Каким будет расщепление по генотипу гибридов от скрещивания двух гетерозиготных растений? Каким будет расщепление по генотипу гибридов от скрещивания двух гомозиготных растений?

А) 1:1; Б) 1:2:1; В) 1:3; Г) нет расщепления.

Ген, отвечающий за свертываемость крови, и ген, отвечающий за наличие веснушек. Являются ли эти гены аллельными?

А) да; Б) нет.

Сколько типов гамет образует гомозиготная особь?

А) 1; Б) 2; В) 3; Г) 4.

Сколько типов гамет образует гетерозиготная особь?

А) 1; Б) 2; В) 3; Г) 4.

Какое количество аллелей одного гена в норме содержится в гамете человека?

А) 1; Б) 2; В) 3; Г) 6.

Каким будет расщепление по фенотипу гибридов от скрещивания двух гетерозиготных растений?

А) 1:1; Б) 1:2:1; В) 1:3; Г) нет расщепления.

22. Аллелизм – это:

А) явление парности генов

Б) явление расщепления признаков у гибридов

В) преобладание у гибридов признака одного из родителей

23. Рецессивным называется признак…

А) любой признак организма

Б) признак, проявляющийся у гетерозиготных особей

В) признак, не проявляющийся у гетерозиготных особей

Г) признак, которым одна особь отличается от другой

24. Каким будет расщепление по фенотипу гибридов от скрещивания двух гомозиготных особей?

А) 1:1; Б) 1:2:1; В) 1:3; Г) расщепления нет

25. Какая часть гибридов от скрещивания

аа х аа является гетерозиготной?

А) 0 %; Б) 25 %; В) 5 %; Г) 100 %.

А.1. Гаметы – специализированные клетки, с помощью которых осуществляется 1) половое размножение 3) вегетативное размножение 2) прорастание семян 4)

рост вегетативных органов

А.2. Какая болезнь человека – результат генной мутации? 1) грипп 2) малярия 3) серповидная клеточная анемия 4) дизентерия

А.3. Особей, образующих гаметы разного сорта, в потомстве которых происходит расщепление, называют 1) аллельными 2) гетерозиготными 3) неаллельными 4) гомозиготными

А.4. В соматических клетках здорового человека находится 1) 32 хромосомы 2) 46 хромосом 3) 21 хромосома 4) 23 хромосомы

А.5. Два гена наследуются сцеплено, если они располагаются в 1) гомологичных хромосомах 3) негомологичных хромосомах 2) половых хромосомах 4) одной хромосоме

А.6. Для определения генотипа особи проводят скрещивание 1) дигибридное 2) анализирующее 3) промежуточное 4) полигибридное

А.7. Соотношение по фенотипу 3:1 соответствует 1) закону Моргана 3) закону расщепления 2) сцепленного с полом наследования 4) закону единообразия

А.8. Синдром Дауна вызван 1) моносомией по 21 хромосоме 3) трисомией по Х-хромосоме 2) трисомией по 21 хромосоме 4) моносомией по Х-хромосоме

А.9. Благодаря конъюгации и кроссинговеру при образовании гамет происходит 1) уменьшение числа хромосом вдвое \ 2) увеличение числа хромосом вдвое 3) обмен генетической информации между гомологичными хромосомами 4) увеличение числа гамет

А.10. При скрещивании кроликов с генотипами ААвв и ааВВ получится потомство с генотипом 1) АаВВ 2) ААВв 3) ААВВ 4) АаВв

А.11. При скрещивании двух длинношерстных морских свинок получили 25% короткошерстных особей. Это значит, что родительские особи являлись 1) гомозиготными по доминантному гену 2) гомозиготными по рецессивному гену 3) одна особь гомозиготной по доминантному гену, а другая гетерозиготной 4) гетерозиготными

А.12. Хромосомный набор половой клетки женщины содержит 1) две ХХ - хромосомы 3) 46 хромосом и две ХХ - хромосомы 2) 22 аутосомы и одну Х - хромосому 4) 23 аутосомы и одну Х - хромосому

А.13. При скрещивании черной морской свинки (Аа) с черным самцом (Аа) в поколении F1 получится 1) 50% белых и 50% черных особей 3) 75% белых и 25% черных особей 2) 25% белых и 75% черных особей 4) 100% - черных особей

А.14. У человека гетерогаметным является пол 1) мужской 3) и мужской и женский 2) в одних случаях – мужской, в других - женский 4) женский

А.15. Какова вероятность рождения детей с веснушками у супружеской пары, если генотип женщины – Аа, а мужчины – аа (А- наличие веснушек)? 1) 100% 2) 50% 3) 25% 4) 75%

А.16. Сколько типов гамет может образоваться в результате нормального гаметогенеза у особи с генотипом ААВв 1) один 2) три 3) два 4) четыре

А.17. Определите генотип родительских растений гороха, если при скрещивании оказалось 50% растений гороха с желтыми и 50% - с зелеными семенами 1) Аа х Аа 2) АА х АА 3) АА х аа 4) Аа х аа

А.18. Какова вероятность рождения кареглазого ребенка у голубоглазой матери и гетерозиготного по данному признаку кареглазого отца? 1) 25% 2) 50% 3) 100% 4) 75%

А.19. Преобладающий ген, обозначающийся заглавной буквой, называется 1) рецессивный 2) аллельный 3) доминантный 4) неаллельный

А.20. Парные гены, расположенные в гомологичных хромосомах и определяющие окраску цветов гороха, называют 1) сцепленными 2) доминантными 3) рецессивными 4) аллельными

В.1. Вставьте в текст «Наследственность» пропущенные термины из предложенного перечня, используя для этого цифровые обозначения. Запишите в таблицу получившуюся последовательность цифр. Наследственность – это свойство организмов передавать при размножении признаки потомству из поколения в поколение. Элементарная единица наследственного материала – это ___________(А). Его основой является ___________(Б). Совокупность всего наследственного материала организма – это________(В), а совокупность его внешних и внутренних признаков образуют его ___________(Г).

ПЕРЕЧЕНЬ ТЕРМИНОВ 1) хромосома 2) генофонд 3)АТФ 4) фенотип 5) ген 6) генотип 7) мутаген 8) ДНК А Б В Г

С.1. При скрещивании самки дрозофилы, дигетерозиготной по генам А и В, с рецессивным самцом получено следующее расщепление по фенотипу: 47:3:3:47. Определитерастояние между генами А и В

1. Закономерности сцепленного наследования описывают: г) наследование неаллельных генов, расположенных в разных хромосомах

в) наследование неаллельных генов, расположенных в одной хромосоме
б) поведение хромосом в мейозе
а) наследование аллельных генов

2. Сколько типов гамет образует зигота СсВв, если гены С (с) и В (в) наследуются сцеплено:

а) один
в) три
б) два
г) четыре

3. Частота перекрёста хромосом зависит от:
г) количества хромосом в клетке
б) доминантности или рецессивности генов
в) расстояния между генами
а) количества генов в хромосоме

4. Какие новые гаметы могут появиться у родителей с генотипами ВСIIbс, если между некоторой частью генов произойдёт кроссинговер:

а) BC bc
г) Bc bC
в) BB bb
б) Bb Cc

5. Явление сцепленного наследования получило название

гипотезы чистоты гамет
в) кроссинговера
г) закона Моргана
а) третьего закона Менделя

6. Сколько хромосом отвечает за наследование пола у собак, если у них диплоидный набор хромосом равен78:

б) 18
а) 39
г) 78
в) 2

1).Генотип организма-это: а) проявляющиеся внешние и внутренние признаки организма б) наследственные признаки организма в) способность организма к

изменениям г) передача признака от поколения к поколению 2)Заслуга Г. Менделя заключается в выявлении: а) распределения хромосом по гаметам в процессе мейоза б) закономерностей наследования родительских признаков в) изучение сцепленного наследования г) выявлении взаимосвязи генетики и эволюции 3)Гибридологический метод Г. Менделя основан на: а) межвидовом скрещивании растений гороха б) выращивании растений в различных условиях в) скрещивании разных сортов гороха, отличающихся по определённым признакам г) цитологическом анализе хромосомного набора. 4).Анализирующее скрещивание проводят для: а) выявление доминантного аллеля б) того, чтобы выяснить, какой аллель рецессивен в) выведения чистой линии г) обнаружения гетерозиготности организма по определённому признаку. 5)Значение кроссинговера заключается в: а) независимом распределении генов по гаметам б) сохранении диплоидного набора хромосом в) создании новых наследственных комбинаций г) поддержании постоянства генотипов организма 6)Различия в размерах листьев одного дерева-это пример изменчивости: а) генотипической б) модификационной в) мутационной г) комбинативной. 6) А) Мутации:__________________________________________________________________ Б) Модификации:______________________________________________________________ 1) пределы изменчивости укладываются в норму реакции; 2) происходят резкие, скачкообразные изменения в генотипе; 3) происходят изменения под влиянием среды; 4) изменяется степень выраженности качественных признаков; 5) происходит изменение числа генов в хромосоме; 6) появляется в сходных условиях среды у генетически близких организмов, т. е. имеет групповой характер. 7). А) Соматические мутации:___________________________________________________________ Б) Генеративные мутации:____________________________________________________________ 1) не наследуются; 2) возникают в гаметах; 3) возникают в клетках тела; 4) наследуются; 5) имеют эволюционное значение; 6) не имеют эволюционного значения. 8)Выбери три правильных утверждения. Закон независимого наследования признаков соблюдается при условиях: 1) один ген отвечает за один признак; 2) один ген отвечает за несколько признаков; 3) гибриды первого поколения должны быть гомозиготными; 4) гибриды первого поколения должны быть гетерозиготными; 5) изучаемые гены должны распологаться в разных парах гомологичных хромосом; 6) изучаемые гены могут распологаться в одной паре гомологичных хромосом.

Aллель - вариант (состояние) гена, локализованного в определенном локусе (месте) хромосомы.

Aллельные гены - гены, расположенные в одинаковых (идентичных) локусах гомологичных хромосом.

Аллели множественные - гены, представленные в популяции более чем в двух разных вариантах (состояниях). Механизм возникновения ­независимые генные мутации во дном локусе хромосомы.

Множественные аллели определяют варианты_ одного признака. Например, система групп крови АВО У человека кодируется тремя генами: Ja, Jb,i

Аутосомы - неполовые хромосомы, имеющие одинаковые размеры и форму у особей разных полов. У человека обозначаются цифрами от 1 до 22. Совокупности генов одной и той же аутосомы у разных индивидуумов отличаются комбинациями доминантных и рецессивных генов.

Гамета - половая клетка организма (яйцеклетка или сперматозоид).

Гаплоидный набор хромосом - определяется, как правило, в гаметах и содержит одну из каждой пары аутосом и одну половую хромосому (Х или У).

Гемизиготный генотип - генотип, в котором представлен только один аллельный ген. В норме, это характерно для генов, локализованных в негомологичных участках половых хромосом. В гемизиготном состоянии единственная аллель всегда проявляет себя в фенотипе.

Геном - совокупность генов всех особей определенного вида.

Генотип - совокупность всех генов диплоидной (соматической) клетки (в т.ч. митохондрий и пластид).

Генофонд - совокупность всех генов, определяющих у особей определенной популяции.

Гетерозиготный организм - особь, У которой в идентичных локусах гомологичных хромосом располагаются разные аллельные гены. При скрещивании гетерозиготных организмов происходит расщепление по генотипу и фенотипу в соответствии с законами Г.Менделя.

Гомозиготный организм - особь, у которой в идентичных локусax гомологичных хромосом располагаются одинаковые аллельные гены: оба доминантных (гомозиготный доминантный генотип) или оба рецессивных (гомозиготный рецессивный генотип).

Диплоидный набор хромосом - полный парный набор хромосом, содержащийся в соматических клетках (все клетки организма, за исключением половых).

Доминантный ген - ген, признак которого обычно проявляется у гетерозиготных организмов. Степень проявления доминантности зависит от формы взаимодействия аллельныx генов.

Доминирование полное - форма взаимодействия аллельных генов, при которой доминантный ген полностью подавляет действие рецессивного гена и фенотип гомозиготных доминантных и гетерозиготных организмов сходный.

Доминирование неполное - форма взаимодействия aллельных генов, при которой имеет место промежуточное проявление признака у гетерозиготных организмов по сравнению с гомозиготными. При этом степень проявления признака имеет следующую последовательность: АА > Аа > аа.

Кариотип - диплоидный набор хромосом, характеризующийся совокупностью признаков (число, форма, особенность дифференциального окрашивания). Кариотип является важнейшей цитогенетической характеристикой вида.

Кодоминирование - форма взаимодействия аллельных генов, при которой два разных доминантных аллельных генов проявляют себя. в фенотипе в равной степени. Пример, IV группу крови у человека определяет генотип JA J в.

Менделирующие признаки - наследственные признаки, которые контролируются аллеJ1!>НЫМИ генами и наследование их происходит в соответствии с законами моногибридного скрещивания Г.Менделя.

Наследование - способ передачи наследственной информации между поколениями. Варианты наследования зависят от локализации ДНК в структурных компонентах клетки. Различают аутосомное, X-сцепленное, голандрическое (У -сцепленное) и цитоплазматическое наследование.

Наследственность - общее свойство живых организмов обеспечивать структурную и функциональную преемственность между поколениями, а также специфический характер индивидуального развития.

Признак - любое свойство или качество (морфологическое биохимическое, иммунологическое, клиническое), которое отличает один организм от другого.

Фенотип - совокупность всех признаков организма.

Хромосомы половые - хромосомы, определяющие генетический пол организма - Х и У. У человека женский пол является гомогаметным – в яйцеклетках содержатся по одной Х-хромосоме (кариотип женщин ­46,ХХ), а мужской пол является гетерогаметным - в сперматозоидах находится либо Х-хромосома, либо У-хромосома (кариотип мужчин ­46,ХУ).

Хромосомы гомологичные - хромосомы, имеющие одинаковую ДЛИНУ: форму и характерные особенности дифференциального окрашивания. В диплоидном наборе содержатся 2 гомологичные хромосомы - аутосомы с 1 по 22 пары, у женщин - две Х-хромосомы. У мужчин половые хромосомы (Х и у) являются негомологичными.

1. Биология /Под редакцией В.Н.Ярыгина. в 2-х кн. М., Высшая школа, 2006. -кн. l, с. 61-65, 88-90, 115-125, 137-141, 155-158,222-227.

2. Лекционный материал

Темы учебно-исследовательской работы студентов: 1. Зарождение и становление генетики как науки. Научные труды



Г.Менделя, А.Вейсмана, х.де Фриза, В.Иоганнсена, Т.Моргана.

2. Генетические исследования в СССР.

3. Менделирующие признаки человека: норма и патология.



Похожие статьи