Счетчик гейгера своими руками из неоновой. Самодельный счетчик гейгера

UPD: Кто уже читал пост - пожалуйста зайдите и поучаствуйте в опросе. Спасибо большое!

Примерно полтора года назад на нескольких сетевых ресурсах, в том числе и на хабре, начали пиарить проект «До-ра» - приставку к iPhone, позволяющую измерять радиационный фон и делать много всего вкусного на основании получаемой со счётчика Гейгера информации. Статьи в новостях проекта упоминают несколько многомиллионных грантов, выделенных на разработку приборчика фондом «Сколково». Шли месяцы, «До-ра» всё никак не получалась, покупатели ждали, конкуренты не дремали. Так ли сложна «До-ра» как её малюют и как собрать за пару часов из подручных деталей в десять раз более чувствительный аналог я расскажу тем кто нажмёт на

Итак, приступим. Совсем недавно я узнал о прекрасной (и к тому же бесплатной!) программе GeigerBot, обрабатывающей поступающие на микрофонный вход iPhone или iPad импульсы с детекторов ионизирующего излучения и имеющей приятную особенность: при определённой комбинации настроек через выход наушников воспроизводится синусоидальный сигнал частотой 20 кГц. Комбинация настроек, необходимая для этого, такова: в ClickifyLab все регуляторы должны быть в максимуме, Echo Filter включен, а сама функция щелчков Clickify - выключена. Проделав соответствующие настройки я убедился с помощью 3.5-миллиметрового штекера и осциллографа в том что сигнал действительно появляется и его размах от пика до пика при максимальной громкости составляет примерно 1.3 вольта. В этот момент не осталось никаких сомнений в том через час этот сигнал будет использован после небольшой трансформации для питания счётчика Гейгера, импульсы с которого будут направлены на микрофонный вход.
Счётчик был взят популярный - СБМ-20. Для его питания нужно 400 вольт постоянного тока, получить их можно стандартым способом с помощью трансформатора имеющего высокий коэффициент трансформации и выпрямителя. Очень высокий коэффициент трансформации у трансформаторов, питающих люминесцентные лампы с холодным катодом в подсветках мониторов. Мне подвернулась плата подсветки от уже-не-помню-чего, содержащая трансформатор SGE2687-1 (подойдёт любой аналогичный, их сотни типов) с коэффициентом трансформации около 150. Немного маловато, но другого у меня не было и недостаток напряжения был восполнен диодными удвоителями. Берём макетку и начинаем собирать схему.

Схема получилась очень простой: трансформатор, два удвоителя напряжения, варистор на 390 вольт в качестве стабилитрона и транзистор для увеличения длительности приходящих со счётчика Гейгера импульсов до удобоваримых для звукового АЦП iPhone значений. При исправных деталях и правильном монтаже она начнёт работать сразу, номиналы большинства деталей можно изменять в очень широких пределах без ущерба работоспособности всей схемы. Вставляем разъём в iPhone и запускаем приложение GeigerBot. Аккуратно высокоомным (не менее 100 МОм) вольтметром или тестером с добавочным сопротивлением контролируем напряжение на варисторе, оно должно быть около 400 вольт. Убеждаемся что в настройках GeigerBot выбран тип счётчика СБМ-20 и наблюдаем за количеством регистрируемых импульсов. При естественном радиационном фоне (0.1-0.15 мкЗв\ч) импульсы будут следовать со средней скоростью 20-30 в минуту. При большой длине кабеля от разъёма до схемы возможно взаимное влияние относительно мощного выходного сигнала частотой 20 кГц на микрофонный вход, проявляться это может в виде огромной скорости регистрации импульсов - несколько тысяч в секунду. Для ослабления этого влияния используется два раздельных земляных провода - для питающей и сигнальных цепей. В случае таких проблем в настройках GeigerBot надо увеличить порог срабатывания по амплитуде импульсов (Settings - Geiger Counter - Custom GM tube - I/O Settings - Volume threshold поставить 10000 или около того).
Вот небольшое видео, показывающее работу устройства.

На двадцать пятой секунде показана реакция счётчика на солонку, изготовленную в США в сороковых годах прошлого столетия и покрытую урановой глазурью, на тридцать пятой - форма импульсов на микрофонном входе iPhone.
Вот и всё, то есть почти всё. Чтобы придать нашему детектору-приставке законченный вид возьмём небольшой отрезок подходящей трубки, засунем туда всё что мы напаяли, не забыв заизолировать части схемы друг от друга и загерметизируем по торцам термоклеем. Вот теперь всё, можно ехать в Припять: предупреждён - значит вооружён.

Спасибо за внимание. Всем удачи в техническом творчестве и хорошей экологической обстановки!

Инструкция

Приобретите счетчик для дозиметра. Желательно, чтобы он был рассчитан на напряжение питания, равное 400 вольтам, поскольку большинство схем самодельных приборов рассчитано на именно таких датчиков. Из отечественных наиболее подходящим является СБМ-20. А вот довольно распространенный счетчик типа СТС-5 применять нежелательно: при аналогичных параметрах он сильно СБМ-20 по долговечности.

Поскольку описанные на данной странице преобразователи рассчитаны на работу 500-вольтными счетчиками, для работы с 400-вольтным прибором придется изменить настройку цепи обратной связи либо взять другое сочетание стабилитронов и неоновых ламп в этой цепи (в зависимости от выбранной схемы).

Напряжение на выходе преобразователя измерьте вольтметром с входным сопротивлением не менее 10 МОм. Убедитесь, что оно действительно равно 400 В. Помните, что даже при столь малой мощности оно может представлять опасность для наличия в схеме заряженных .

Изготовив преобразователь и убедившись, что он работоспособен, соберите измерительный узел дозиметра. Его схему выберите в зависимости от того, на какое входное напряжение рассчитан преобразователь. Подключите его к преобразователю, предварительно отключив его питание и разрядив накопительный конденсатор.

Готовый дозиметр поместите в корпус. Он должен исключать прикосновение к цепям, в которых напряжение, но иметь ряд тонких отверстий вблизи счетчика для прохождения к нему бета-лучей.Помните, что альфа- самодельный дозиметр обнаружить не способен.

Если в минуту регистрируется не более тридцати пяти импульсов, радиационный фон можно считать нормальным. Обнаружив же любой излучающий объект, немедленно обратитесь для его утилизации в ГУП МосНПО «Радон» по телефонам или адресам электронной почты, указанным на следующей странице:
http://www.radon.ru/contakt.htm

Видео по теме

Для измерения фона радиоактивного излучения и определения наличия жесткого ионизирующего излучения необходимы специальные приборы. Простейший счетчик Гейгера – Мюллера можно собрать своими руками. Точные количественные значения излучения определить он не сможет, но появление вблизи источника жесткого ионизирующего излучения определит.

Вам понадобится

  • датчик СБТ9, транзистор КТ630Б, резисторы на 24 кОм и 7.5 мОм, 2 электролитических конденсатора, 470 микрофарад на 16 Вольт и 2.2 микрофарада на 16 Вольт. Так же потребуются конденсатор емкостью 2200 пикофарад на напряжение не меньше 1 киловольт и 2 диода КД102А. В качестве источника питания можно применить любую батарею на 9 Вольт. Для сигнализации используется плоский пьезокерамический излучатель от детской игрушки или телефона – трубки.

Инструкция

Самая сложная часть этого счетчика – импульсный трансформатор. Намотайте трансформатор на броневом магнитопроводе из феррита марки 2000НМ. Вторичную обмотку виток к витку намотайте проводом диаметром 0,08 мм 3 слоями по 180 витков, (чтобы исключить межвитковой пробой). Для первичной обмотки намотайте 13 витков, сделайте отвод от верхнего края на 5-м витке.

Если собрать вышеописанный прибор для вас слишком сложно, то можно ограничиться еще более простой моделью счетчика Гейгера. Для этого, просто возьмите стартер, используемый в люминесцентных пампах и подключите его к электросети 220В последовательно с лампой накаливания мощностью 15 ватт. Это можно назвать простейшим счетчиком Гейгера.
Чтобы оценить уровень бета и гамма излучения, посчитайте количество вспышек лампы в минуту. Количество вспышек будет пропорционально уровню . Если имеется возможность достать на небольшое время настоящий счетчик Гейгера, то измерьте им уровень радиации. Одновременно посчитайте количество вспышек самодельного прибора. Затем разделите показания счетчика на количество вспышек лампы в минуту. Запишите полученное число. Теперь, посчитав количество вспышек в минуту и умножив его на это число, вы получите значение уровня радиации.

Видео по теме

Обратите внимание

Обратите внимание на правильность подключения выводов первичной обмотки трансформатора. При подключенном к счетчику питании соблюдайте осторожность – в генераторе есть опасное для жизни и здоровья напряжение! Тщательно изолируйте оголенные выводы высоковольтной части генератора.

Современные счетчики Гейгера называют дозиметрами радиации и радиометрами. Они позволяют определить уровень радиационного излучения окружающей среды еще до того, как он успеет сказаться на вашем здоровье.

С помощью современного счетчика Гейгера можно измерить уровень радиации строительных материалов, земельного участка или квартиры, а также продуктов питания. Он демонстрирует практически стопроцентную вероятность заряженной частицы, ведь для ее фиксирования достаточно всего одной пары электрон-ион.

Технология, на основе которой создан современный дозиметр на базе счетчика Гейгера-Мюллера, позволяет получать результаты высокой точности за очень короткий промежуток времени. На измерение требуется не больше 60 секунд, а вся информация выводится в графическом и числовом виде на экране дозиметра.

Настройка прибора

У прибора есть возможность настройки порогового значения, когда он превышен, издается звуковой сигнал, предупреждающий вас об опасности. Выберите одно из заданных значений порога в соответствующем разделе настроек. Звуковой сигнал также можно отключить. Перед проведением измерений рекомендуют провести индивидуальную настройку прибора, выбрать яркость дисплея, параметры звукового сигнала и элементов питания.

Порядок выполнения измерений

Выберите режим «Измерение», при этом прибор начинает оценку радиоактивной обстановки. Примерно через 60 секунд на его дисплее появляется результат измерений, после чего начинается следующий цикл анализа. Для того чтобы получить точный результат, рекомендуют провести не менее 5 циклов измерений. Увеличение числа наблюдений дает более достоверные показания.

Чтобы измерить радиационный фон предметов, например стройматериалов или пищевых продуктов, нужно включить режим «Измерение» на расстоянии нескольких метров от объекта, затем поднести прибор к предмету и измерить фон максимально близко к нему. Сравните показания прибора с данными, полученными на расстоянии нескольких метров от предмета. Разница между этими показаниями - это дополнительный радиационный фон исследуемого объекта.

Если результаты измерений превышают естественный фон, характерный для той местности, в которой вы находитесь, это свидетельствует о радиационном загрязнении исследуемого объекта. Для оценки загрязнения жидкости рекомендуют проводить измерения над ее открытой поверхностью. Чтобы защитить прибор от влаги, его нужно обернуть полиэтиленовой пленкой, но не более чем в один слой. Если дозиметр длительное время находился при температуре ниже 0оС, перед проведением измерений его необходимо выдержать при комнатной температуре в течение 2 часов.

В данном обзоре приводится описание несложного и достаточно чувствительного дозиметра, регистрирующего даже незначительное бета- и гамма- излучение. В качестве датчика радиационного излучения выступает отечественный типа СБМ-20.

Внешне он выглядит как металлический цилиндр диаметром 12 мм и длинной около 113 мм. Его рабочее напряжение составляет 400 вольт. Аналогом ему может послужить зарубежный датчик ZP1400, ZP1320 или ZP1310.

Описание работы дозиметра на счетчике Гейгера СБМ-20

Питание схемы дозиметра осуществляется всего от одной лишь батарейки на 1,5 вольта, так как ток потребления не превышает 10 мА. Но поскольку рабочее напряжение датчика радиации СБМ-20 составляет 400 вольт, то в схеме применен преобразователь напряжения позволяющий увеличить напряжение с 1,5 вольт до 400 вольт. В связи с этим следует соблюдать крайнюю осторожность при налаживании и использовании дозиметра!

Повышающий преобразователь дозиметра – не что иное как простой блокинг-генератор. Появляющиеся импульсы высокого напряжения на вторичной обмотке (выводы 5 – 6) трансформатора Тр1, выпрямляются диодом VD2. Данный диод должен быть высокочастотным, поскольку импульсы достаточно короткие и имеют высокую частоту следования.

Если счетчик Гейгера СБМ-20 находится вне зоны радиационного излучения звуковая и световая индикация отсутствует, поскольку оба транзистора VT2 и VT3 заперты.

При попадании на датчик СБМ-20 бета- или гамма- частиц происходит ионизация газа, который находится внутри датчика, в результате чего на выходе образуется импульс, который поступает на транзисторный усилитель и в телефонном капсюле BF1 раздается щелчок и вспыхивает светодиод HL1.

Вне зоны интенсивного излучения, вспышки светодиода и щелчки из телефонного капсюля следуют через каждые 1…2 сек. Это указывает на нормальный, естественный радиационный фон.

При приближении дозиметра к какому-либо объекту, имеющему сильное излучение (шкале авиационного прибора времен войны или к светящемуся циферблату старых часов), щелчки станут чаще и даже могут слиться в один непрерывный треск, светодиод HL1 будет постоянно гореть.

Так же дозиметр снабжен и стрелочным индикатором — микроамперметром. Подстроечным резистором производят подстройку чувствительности показания.

Детали дозиметра

Трансформатор преобразователя Тр1 выполнен на броневом сердечнике имеющий диаметром приблизительно 25 мм. Обмотки 1-2 и 3-4 намотаны медным эмалированным проводом диаметром 0,25 мм и содержат соответственно 45 и 15 витков. Вторичная обмотка 5-6 намотана медным проводом диаметром 0,1 мм, содержит 550 витков.

Светодиод возможно поставить АЛ341, АЛ307. В роли VD2 возможно применить два диода КД104А, подключив их последовательно. Диод КД226 возможно поменять на КД105В. Транзистор VT1 возможно поменять на КТ630 с любой буквой, на КТ342А. Телефонный капсюль необходимо выбрать с сопротивлением акустический катушки более 50 Ом. Микроамперметр с током полного отклонения 50 мкА.

Счетчик Гейгера состоит из генератора высокого напряжения, трубки, усилителя и ждущего мультивибратора. Все четыре составляющие обозначены на схеме. Во второй части статьи мы расскажем, как подключить счетчик к USB-контроллеру и компьютеру.

Генератор высокого напряжения

Внимание! Высокое напряжение опасно для жизни, поэтому соблюдение техники безопасности обязательно. Не прикасайтесь к находящимся под напряжением участкам электрической цепи. Перед началом работы с участками цепи всегда отключайте питание. Конденсаторы С4/С5 могут находиться под напряжением даже после отключения цепи от источника питания.

Генератор высокого напряжения состоит из генератора импульсов с частотой 50 Гц на микросхеме NE555 , транформатора, умножителя напряжения и стабилизатора. Если напряжение становится слишком высоким, стабилизатор гасит колебания в генераторе импульсов. Кроме того, диоды Зенера ограничивают напряжение до отметки в 55 0В. В схеме применен стандартный трансформатор 9 В/220 В, но для получения промежуточного напряжения используется первичная обмотка. Контролировать напряжение после трансформатора можно вольтметром с высоким импедансом или «тестовой отверткой».

Трубка Гейгера

Трубку можно приобрести на аукционе ebay за несколько евро или долларов. Подходят многие виды трубок, но напряжение нужно будет отрегулировать в соответствии с характеристиками выбранной модели, - обычно это 550-600 В. Сила тока в трубке ограничивается резистором с сопротивлением 10 МОм, но лучше подключить последовательно два резистора по 4,7 МОм или один резистор высокого напряжения.

Внимание! Не прикасайтесь к трубке, так как она работает под высоким напряжением!

Усилитель и ждущий мультивибратор

Для усиления поступающего из трубки сигнала используется обычный транзистор. Его эмиттер подсоединен к микросхеме 555 мультивибратора, для запуска которого достаточно даже очень короткого импульса. Выход микросхемы подсоединен к динамику, благодаря чему счетчик Гейгера привычно тикает. Также выход можно подключить к светодиодам или оптопаре, а ее, в свою очередь, - ко входу микроконтроллера.

Прикасаться к участкам цепи, находящимся перед оптопарой, опасно для жизни!

Соединение с микроконтроллером

Выход оптопары можно подсоединить к микроконтроллеру с поддержкой USB (идеально подойдет описанный на нашем сайте ). Вот так выглядит собранная цепь. USB-плата подключена к компьютеру.

Чтобы информация передавалась каждый раз, когда со счетчика поступает импульс, нужно изменить прошивку контроллера. Измерение промежутков между импульсами можно поручить как самому контроллеру, так и компьютерной программе.

Внеся изменения в файл user.c (из примера работы с USB) можно проверить состояние подключенного вывода микроконтроллера.

if(mUSBUSARTIsTxTrfReady())
{
while(PORTCbits.RC2);
mUSBUSARTTxRam("Impulsion");
start_up_state=0;
}

Answer

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry"s standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five http://jquery2dotnet.com/ centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.

Счетчик Гейгера своими руками



Мысль приобрести счетчик Гейгера появилась у меня давно, как говорится, на всякий случай.
Но посмотрев на цены готовых приборов, желание пропало:)
Так же несколько раз натыкался в интернете на схемы приборов, но подходящий для себя так и не нашел.
...и вот, однажды, почитав какой то форум, о том, как много всяких радиоактивных вещей может нас окружать, о которых мы даже и не догадываемся, желание иметь под рукой подобный прибор появилось вновь.
Для этого было решено разработать собственный прибор.

Ниже расположена схема счетчика Гейгера на микроконтроллере PIC 16F84, печатная плата в PCAD"е и прошивка микроконтроллера.

Характеристики прибора:
Питание: 9 В
Потребляемый ток без подсветки ЖКИ: 7 мА
с подсветкой ЖКИ: 11 мА (зависит от яркости)
Диапазон измерений: 0 мкР - 144 мР (предел счетчика СБМ-20)

ЖКИ пришлось заказвыать, т.к. в магазинах подходящих по габаритам не оказалось. Для этих целей оптимально подходит 8 символьный 2 строчный ЖКИ на базе контроллера HD44780.
В принципе, должен подойти любой 2х строчный ЖКИ на базе контроллера HD44780

Повышающий трансформатор намотан на ферритовом кольце 16х10х4.5

Обмотка I - 420 витков провода ПЭВ 0.1
Обмотка II - 8 витков провода ПЭВ 0.15 - 0.25
Обмотка III - 3 витка провода ПЭВ 0.15 - 0.25

В качестве корпуса использован цифровой мультиметр DT-830. Дешевле оказалось купить мультиметр ради его корпуса, чем покупать корпус отдельно:)

Небольшая доработка

Вынимаем потроха, удаляем наклейку, канцелярским ножом и напильником доводим до совершенства.
Так же сверлим необходимые отверстия:

При проектировании я не учел одну вещь - найти малогабаритную кнопку и выключатель для крепления на корпусе оказалось непросто.
Поэтому пришлось сделать дополнительно небольшую печатку для монтажа выключателя от неисправного мультиметра, а кнопку закрепить хомутиком на внутренней стороне передней панели.

Проверка прибора:

Для начала проверяем правильность монтажа, подключение трансформатора и ЖКИ, а также полярность подключения счетчика СБМ-20.
Подаем питание.
ВНИМАНИЕ! В схеме присутствует высокое напряжение!
На конденсаторе С1 должно быть напряжение не менее 200 вольт (при измерении цифровым мультиметром, т.к его внутреннее сопротивление не достаточно высоко, происходит падение напряжения, на самом деле на конденсаторе С1 должно быть около 350 вольт!).

На ЖКИ появляется текст:

После инициализации, на дисплее отображаются показания эквивалентной дозы радиации. В среднем, около 14-22 мкР, но может быть и более.
В дальнейшем, каждую секунду происходит обновление показаний, с уточнением средней эквивалентной дозы радиации за единицу времени.

Далее нужно проверить, что счетчик действительно работает, и может показывать что нибудь большее, чем естественный радиационный фон.
Для этого в магазине удобрений можно купить "нитрат калия" (KNO3). В KNO3 содержится его радиоактивный изотоп, на который должен реагировать прибор.

Емкость с KNO3 необходимо расположить максимально близко к чувствительной стороне прибора (там, где находится счетчик СБМ-20).

Опять же, результат может быть разный, но показания должны быть существенно выше естественного фона.



Похожие статьи