Актуальные и нерешенные проблемы современной физики. Нерешенные проблемы науки

Где сможете, помимо прочего, присоединиться к проекту и принять участие в его обсуждении .

Список Эта страница по шкале оценок статей Проекта:Физика имеет уровень «список» .

Высокая

Важность этой страницы для проекта Физика : высокая

Статья является переводом соответствующей английской версии. Лев Дубовой 09:51, 10 марта 2011 (UTC)

Эффект «Пионера» [ править код ]

Нашли объяснение эффекту Пионера . Стоит убрать теперь его из списка? Русские идут! 20:55, 28 августа 2012 (UTC)

Объяснений эффекту есть много, ни одно из них не является на данный момент общепризнанным. Имхо пусть повисит пока:) Evatutin 19:35, 13 сентября 2012 (UTC) Да, но, как я понял, это первое объяснение, которое согласуется с наблюдаемым отклонением в скорости. Хотя я согласен, что надо подождать. Русские идут! 05:26, 14 сентября 2012 (UTC)

физика элементарных частиц [ править код ]

Поколения материи:

Зачем нужны три поколения частиц, до конца всё-таки неясно. Не ясна иерархия констант связей и масс этих частиц. Не ясно, есть ли еще другие поколения, кроме этих трёх. Неизвестно, существуют ли другие частицы, о которых мы не знаем. Не ясно, почему бозон Хиггса, только что открытый на Большом Адроном Коллайдере, такой легкий. Есть и другие важные вопросы, на которые Стандартная Модель не дает ответа.

Частица Хиггса [ править код ]

Частицу Хиггса тоже уже нашли. --195.248.94.136 10:51, 6 сентября 2012 (UTC)

Пока физики осторожничают с выводами, возможно он не один там, исследуются разные каналы распада - имхо пусть пока повисит... Evatutin 19:33, 13 сентября 2012 (UTC) Только решённые проблемы, бывшие в списке, перемещаются в раздел Нерешённые проблемы современной физики#Проблемы, решённые за последние десятилетия .--Arbnos 10:26, 1 декабря 2012 (UTC)

Масса нейтрино [ править код ]

Известно давно. Но ведь раздел и называется Проблемы, решённые за последние десятилетия - кажется, что была проблема решена не так давно, после находящихся в списке порталов.--Arbnos 14:15, 2 июля 2013 (UTC)

Проблема горизонта [ править код ]

Это ты называешь "одинаковая температура": http://img818.imageshack.us/img818/1583/img606x341spaceplanck21.jpg ??? Это тоже самое что сказать "Проблема 2+2=5". Это вовсе не проблема, так как это неверное утверждение в корне.

  • Думаю будет полезен новый ролик "Space" : http://video.euronews.com/flv/mag/130311_SESU_121A0_R.flv
Что самое интересное, что WMAP показывал точно такой же снимок еще 10 лет назад. У кого дальтонизм, поднимите руку.

Законы аэрогидродинамики [ править код ]

Предлагаю добавить ещё одну нерешённую проблему в список - причём даже относящуюся к классической механике, которая обычно считается совершенно изученной и простой. Проблема резкого несоответствия теоретических законов аэрогидродинамики экспериментальным данным. Результаты моделирования, выполняемого по уравнениям Эйлера, не соответствует результатам, получаемым в аэродинамических трубах. В итоге в аэрогидродинамике сейчас вообще нет рабочих систем уравнений, по которым можно было бы делать аэродинамические расчёты. Есть ряд эмпирических уравнений, которые неплохо описывают эксперименты лишь в узких рамках ряда условий и нет возможности делать расчёты в общем случае.

Ситуация даже абсурдная - в XXI веке все разработки по аэродинамике ведутся через испытания в аэродинамических трубах, в то время как во всех остальных областях техники давно обходятся лишь точными расчётами, не перепроверяя их потом экспериментально. 62.165.40.146 10:28, 4 сентября 2013 (UTC) Валеев Рустам

Не надо, задач, для которых не хватает вычислительных мощностей, хватает и в других областях, в термодинамике, например. Принципиальных сложностей нет, просто модели чрезвычайно сложны. --Renju player 15:28, 1 ноября 2013 (UTC)

Несуразицы [ править код ]

ПЕРВАЯ

Является ли пространство-время принципиально непрерывным или дискретным?

Очень плохо сформулирован вопрос. Пространство-время либо непрерывное, либо дискретное. Пока ответить на этот вопрос современная физика не может. В этом и состоит проблема. Но в данной формулировке спрашивается совершенно другое: тут оба варианта берутся как единое целое «непрерывным или дискретным » и спрашивается: «Является ли пространство-время принципиально непрерывным или дискретным ?». Ответ - да, пространство-время является непрерывным или дискретным. И у меня возникает вопрос, а зачем было такое спрашивать? Нельзя так формулировать вопрос. Видимо, автор плохо пересказал Гинзбурга. И что имеется ввиду под «принципиально »? >> Kron7 10:16, 10 сентября 2013 (UTC)

Можно переформулировать как "Является ли пространство непрерывным или оно дискретно?". Такая формулировка вроде бы исключает приведённый Вами смысл вопроса. Dair T"arg 15:45, 10 сентября 2013 (UTC) Да, это совсем другое дело. Поправил. >> Kron7 07:18, 11 сентября 2013 (UTC)

Да, пространство-время является дискретным, так как непрерывным может быть только абсолютно пустое пространство, а пространство-время далеко не является пустым

;ВТОРАЯ
Отношение инерциальная масса/гравитационная масса для элементарных частиц В соответствии с принципом эквивалентности общей теории относительности, отношение инертной массы к гравитационной для всех элементарных частиц равно единице. Однако, экспериментального подтверждения этого закона для многих частиц не существует.

В частности, мы не знаем, каков будет вес макроскопического куска антивещества известной массы .

Как понимать это предложение? >> Kron7 14:19, 10 сентября 2013 (UTC)

Вес, как известно, это сила, с которой тело действует на опору или подвес. Масса измеряется в килограммах, вес в ньютонах. В невесомости тело массой в один килограмм будет иметь нулевой вес. Вопрос о том, каков будет вес куска антивещества заданной массы, таким образом, не является тавтологией. --Renju player 11:42, 21 ноября 2013 (UTC)

Ну что там непонятного? И надо снять вопрос: чем отличается пространство от времени? Яков176.49.146.171 19:59, 23 ноября 2013 (UTC)И надо убрать вопрос о машине времени: это антинаучная ахинея. Яков176.49.75.100 21:47, 24 ноября 2013 (UTC)

Гидродинамика [ править код ]

Гидродинамика - один из разделов современной физики, наряду с механикой, теорией поля, квантовой механикой и др. Кстати, методы гидродинамики активно используются и в космологии, при изучении проблем мироздания, (Ryabina 14:43, 2 ноября 2013 (UTC))

Вы, возможно, путаете сложность вычислительных задач с принципиально нерешенными проблемами. Так, задача N тел до сих пор не решена аналитически, в ряде случаев представляет существенные сложности при приближённом численном решении, но никаких принципиальных загадок и тайн мироздания не содержит. В гидродинамике нет сложностей принципиальных, есть только вычислительные и модельные, зато в изобилии. В общем, давайте аккуратнее разделять тёплое и мягкое. --Renju player 07:19, 5 ноября 2013 (UTC)

Вычислительные проблемы относятся к нерешённым вопросам математики, а не физики. Яков176.49.185.224 07:08, 9 ноября 2013 (UTC)

Минус-вещесво [ править код ]

К теоретическим вопросам физики я бы добавил гипотезу о минус-веществе. Гипотеза эта чисто математическая : масса может иметь отрицательное значение. Как всякая чисто математическая гипотеза она логически непротиворечива. Но, если взять философию физики, то в этой гипотезе содержиться замаскированный отказ от детерминированности. Хотя, возможно, есть ещё неоткрытые законы физики, описывающие минус-вещество. --Яков 176.49.185.224 07:08, 9 ноября 2013 (UTC)

Шо цэ такэ? (откуда взяли?) --Tpyvvikky ..у математиков и время может быть отрицательным.. и шо теперь

Сверхпроводимость [ править код ]

Какие проблемы с БКШ , что в статье написано про отсутствие «полностью удовлетворительной микроскопической теории сверхпроводимости»? Ссылка при этом на учебник 1963 года издания, чуть-чуть устаревший источник для статьи о современных проблемах физики. Я пока этот пассаж убираю. --Renju player 08:06, 21 августа 2014 (UTC)

Холодный ядерный синтез [ править код ]

"Каково объяснение спорных докладов об избыточном тепле, излучении и трансмутациях?" Объяснение в том, они недостоверны/неверны/ошибочны. Во всяком случае, по стандартам современной науки. Ссылки мёртвые. Удалено. 95.106.188.102 09:59, 30 октября 2014 (UTC)

Копия [ править код ]

Копия статьи http://ensiklopedia.ru/wiki/%D0%9D%D0%B5%D1%80%D0%B5%D1%88%D1%91%D0%BD%D0%BD%D1%8B%D0%B5_%D0%BF%D1%80%D0%BE%D0%B1%D0%BB%D0%B5%D0%BC%D1%8B_%D1%81%D0%BE%D0%B2%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D0%BE%D0%B9_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B8 .--Arbnos 00:06, 8 ноября 2015 (UTC)

Абсолютное время [ править код ]

Согласно СТО нет никакого абсолютного времени, поэтому вопрос о возрасте Вселенной (да и о будущем Вселенной) не имеет смысла. 37.215.42.23 00:24, 19 марта 2016 (UTC)

Боюсь, вы не в теме. Soshenkov (обс.) 23:45, 16 марта 2017 (UTC)

Гамильтонов формализм и дифференциальная парадигма Ньютона [ править код ]

1. Является ли самой фундаментальной проблемой физики тот удивительный факт, что (до сих пор) все фундаментальные теории выражаются через гамильтонов формализм?

2. Является ли ещё более удивительным и совершенно необъяснимым фактом зашифрованная во второй анаграмме гипотеза Ньютона о том, что законы природы выражаются через дифференцитальные уравнения ? Является ли эта гипотеза исчерпывающей или она допускает иные математические обобщения?

3. Проблема биологической эволюции - следствие фундаментальных физических законов, или это самостоятельный феномен? Не является ли феномен биологической эволюции прямым следствием дифференциальной гипотезы Ньютона? Soshenkov (обс.) 23:43, 16 марта 2017 (UTC)

Пространство, время и масса [ править код ]

Что такое "пространство" и "время"? Каким образом массивные тела "искривляют" пространство и влияют на время? Каким образом "искривлённое" пространство взимодействует с телами, вызывая всемирное тяготение, и фотонами, изменяя их траекторию? И при чём тут энтропия? (Пояснение. ОТО даёт формулы, по которым можно, например, рассчитать релятивистские поправки для часов глобальной навигационной спутниковой системы, но она даже не ставит перечисленные вопросы. Если рассматривать аналогию с термодинамикой газа, то ОТО соответствует уровню термодинамики газа на уровне макроскопических параметров (давление, плотность, температура), а тут нужен аналог на уровне молекулярно-кинетической теории газа. Может, гипотетические теории квантовой гравитации объяснят искомое...) P36M AKrigel /обс 17:36, 31 декабря 2018 (UTC) Интересно узнать причины и увидеть ссылку на дискуссию. Я поэтому здесь и спросил, известная нерешённая проблема, в обществе более известная, чем большинство из статьи (по моему субъективному мнению). Даже детям о ней рассказывают в образовательных целях: в Москве в «Экспериментариуме» отдельный стенд с этим эффектом. Несогласные, отзовитесь, пожалуйста. Jukier (обс.) 06:33, 1 января 2019 (UTC)

    • Тут всё просто. "Серьёзные" научные журналы опасаются публиковать материалы по спорным и неясным вопросам, чтобы не потерять свою репутацию. Статьи в прочих изданиях никто не читает и опубликованные в них результаты ни на что не влияют. Полемика публикуется вообще в исключительных случаях. Авторы учебников стараются избегать писать о том, чего они не понимают. Энциклопедия - не место для дискуссий. Правила ВП требуют, чтобы материал статей был основан на АИ, а в спорах между участниками был достигнут консенсус. Ни то ни другое требование в случае публикации статьи по нерешенным вопросам физики достигнуть невозможно. Трубка Ранка лишь частный пример большой проблемы. В теоретической метеорологии дело обстоит более серьёзно. Вопрос о термическом равновесии в атмосфере - базовый, его замять невозможно, а теории то нет. Без этого все прочие рассуждения лишены научного основания. Студентам об этой проблеме, как нерешенной, профессора не рассказывают, а учебники врут по разному. Речь идёт в первую очередь о равновесном градиенте температуры ]

      Синодический период и вращение вокруг оси планет земной группы. Земля и Венера повёрнуты одной стороной к друг другу во время нахождения на одной оси с солнцем. Так же как и Земля с Меркурием. Т.е. период вращения Меркурия синхронизирован с Землёй, а не Солнцем (хотя очень долго считалось что он будет синхронизирован с солнцем как Земля синхронизировалась с Луной). speakus (обс.) 18:11, 9 марта 2019 (UTC)

      • Если найдете источник, в котором об этом говориться как о нерешённой проблеме, то это можете это добавить. - Алексей Копылов 21:00, 15 марта 2019 (UTC)

      Проблемы физики

      Какова природа света?

      Свет в некоторых случаях ведет себя подобно волне, а во многих других - сродни частице. Спрашивается: что же он такое? Ни то, ни другое. Частица и волна - лишь упрощенное представление о поведении света. На самом же деле свет не частица и не волна. Свет оказывается сложнее того образа, что рисуют эти упрощенные представления.

      Каковы условия внутри черных дыр?

      Черные дыры, рассматриваемые в гл. 1 и 6, обычно представляют собой сжимающиеся ядра больших звезд, переживших взрыв в виде сверхновой. У них такая огромная плотность, что даже свет не в состоянии покинуть их недра. Ввиду огромного внутреннего сжатия черных дыр к ним неприменимы обычные законы физики. А поскольку ничто не может покинуть черных дыр, недоступно и проведение каких-либо опытов для проверки тех или иных теорий.

      Сколько измерений присуще Вселенной и можно ли создать «теорию всего сущего»?

      Как говорилось в гл. 2, пытающиеся потеснить стандартную модель теории, возможно, в итоге прояснят число измерений, а также преподнесут нам «теорию всего сущего». Но пусть вас не вводит в заблуждение название. Если «теория всего сущего» и даст ключ к пониманию природы элементарных частиц, внушительный список нерешенных проблем - залог того, что подобная теория оставит без ответа еще много важных вопросов. Подобно слухам о смерти Марка Твена, слухи о кончине науки с приходом «теории всего сущего» слишком преувеличены.

      Возможно ли путешествие во времени?

      Теоретически общая теория относительности Эйнштейна допускает такое путешествие. Однако нужное при этом воздействие на черные дыры и их теоретических собратьев, «кротовые норы», потребует огромных затрат энергии, значительно превосходящих наши нынешние технические возможности. Толковое описание путешествия во времени дается в книгах Митио Каку Гиперпространство (1994) и Образы (1997) и на сайтеhttp://mkaku. org

      Удастся ли обнаружить гравитационные волны?

      Некоторые обсерватории заняты поиском свидетельств существования гравитационных волн. Если такие волны удастся найти, данные колебания самой пространственно-временной структуры будут указывать на происходящие во Вселенной катаклизмы вроде взрыва сверхновых, столкновений черных дыр, а возможно, еще неведомых событий. За подробностями обращайтесь к статье У. Уэйта Гиббса «Пространственно-временная рябь».

      Каково время жизни протона?

      Некоторые теории, не укладывающиеся в рамки стандартной модели (см. гл. 2), предсказывают распад протона, и для обнаружения такого распада было сооружено несколько детекторов. Хотя самого распада пока не наблюдалось, нижняя граница периода полураспада у протона оценивается величиной 10 32 лет (значительно превышающей возраст Вселенной). С появлением более чувствительных датчиков, возможно, удастся обнаружить распад протона или же придется отодвинуть нижнюю границу периода его полураспада.

      Возможны ли сверхпроводники при высокой температуре?

      Сверхпроводимость появляется при падении у металла электрического сопротивления до нуля. В таких условиях установившийся в проводнике электрический ток течет без потерь, которые свойственны обычному току при прохождении в проводниках вроде медного провода. Явление сверхпроводимости впервые наблюдалось при крайне низкой температуре (чуть выше абсолютного нуля, - 273 °C). В 1986 году ученым удалось сделать сверхпроводящими материалы при температуре кипения жидкого азота (-196 °C), что уже допускало создание промышленных изделий. Механизм данного явления понят еще не до конца, но исследователи пытаются добиться сверхпроводимости при комнатной температуре, что позволит уменьшить потери электроэнергии.

      Из книги Занимательно об астрономии автора Томилин Анатолий Николаевич

      5. Проблемы релятивистской астронавигации Одним из самых противных испытаний, которым подвергается летчик, а сейчас космонавт, как это показывают в кино, является карусель. Мы, летчики недавнего прошлого, в свое время называли ее «вертушкой» или «сепаратором». Тех, кто не

      Из книги Пять нерешенных проблем науки автора Уиггинс Артур

      Нерешенные проблемы Теперь, уяснив, как наука вписывается в умственную деятельность человека и как она функционирует, можно видеть, что ее открытость позволяет различными путями идти к более полному постижению Вселенной. Возникают новые явления, по поводу которых

      Из книги Мир в ореховой скорлупке [илл. книга-журнал] автора Хокинг Стивен Уильям

      Проблемы химии Как состав молекулы определяет ее облик?Знание орбитального строения атомов в простых молекулах позволяет довольно легко определить внешний вид молекулы. Однако теоретические исследования облика сложных молекул, особенно биологически важных, пока не

      Из книги История лазера автора Бертолотти Марио

      Проблемы биологии Как развивается целый организм из одной оплодотворенной яйцеклетки?На данный вопрос, похоже, удастся ответить, как только будет решена главная задача из гл. 4: каково устроение и предназначение протеома? Конечно, каждому организму свойственны свои

      Из книги Атомная проблема автора Рэн Филипп

      Проблемы геологии Что вызывает большие перемены в климате Земли наподобие повсеместного потепления и ледниковых периодов?Ледниковые периоды, свойственные Земле последние 35 млн. лет, наступали примерно каждые 100 тыс. лет. Ледники надвигаются и отступают по всему

      Из книги Астероидно-кометная опасность: вчера, сегодня, завтра автора Шустов Борис Михайлович

      Проблемы астрономии Одиноки ли мы во Вселенной?Несмотря на отсутствие каких-либо экспериментальных свидетельств существования внеземной жизни, теорий на этот счет хватает с избытком, как и попыток обнаружить весточки от далеких цивилизаций.Как эволюционируют

      Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

      Нерешённые проблемы современной физики

      Из книги Гравитация [От хрустальных сфер до кротовых нор] автора Петров Александр Николаевич

      Теоретические проблемы Вставка из Википедии.Psychedelic - август 2013Ниже приведён список нерешённых проблем современной физики. Некоторые из этих проблем носят теоретический характер, что означает, что существующие теории оказываются неспособными объяснить определённые

      Из книги Вечное движение. История одной навязчивой идеи автора Орд-Хьюм Артур

      ГЛАВА 14 РЕШЕНИЕ В ПОИСКЕ ПРОБЛЕМЫ ИЛИ МНОГИЕ ПРОБЛЕМЫ С ОДНИМ И ТЕМ ЖЕ РЕШЕНИЕМ? ПРИМЕНЕНИЯ ЛАЗЕРОВ В 1898 г. г. Уэллс вообразил в своей книге «Война миров» захват Земли марсианами, которые использовали лучи смерти, способные без труда проходить через кирпичи, сжигать леса, и

      Из книги Идеальная теория [Битва за общую теорию относительности] автора Феррейра Педро

      II. Социальная сторона проблемы Эта сторона проблемы является, без сомнения, самой важной и самой интересной. Ввиду ее большой сложности мы ограничимся здесь лишь самыми общими соображениями.1. Изменения в мировой экономической географии.Как мы видели выше, стоимость

      Из книги автора

      1.2. Астрономический аспект проблемы АКО Вопрос об оценках значимости астероидно-кометной опасности связан, в первую очередь, с нашим знанием о населенности Солнечной системы малыми телами, особенно теми, что могут столкнуться с Землей. Такие знания дает астрономия.

      Из книги автора

      Из книги автора

      Из книги автора

      Новые проблемы космологии Вернемся к парадоксам нерелятивистской космологии. Вспомним, что причина гравитационного парадокса в том, что для однозначного определения гравитационного воздействия либо недостаточно уравнений, либо нет возможности корректно задать

      Из книги автора

      Из книги автора

      Глава 9. Проблемы унификации В 1947 году только что окончивший аспирантуру Брайс Девитт встретился с Вольфгангом Паули и рассказал, что работает над квантованием гравитационного поля. Девитт не понимал, почему две великие концепции XX века - квантовая физика и общая теория


      Удастся ли обнаружить гравитационные волны?

      Некоторые обсерватории заняты поиском свидетельств существования гравитационных волн. Если такие волны удастся найти, данные колебания самой пространственно-временной структуры будут указывать на происходящие во Вселенной катаклизмы вроде взрыва сверхновых, столкновений черных дыр, а возможно, еще неведомых событий. За подробностями обращайтесь к статье У. Уэйта Гиббса «Пространственно-временная рябь».

      Каково время жизни протона?

      Некоторые теории, не укладывающиеся в рамки стандартной модели (см. гл. 2), предсказывают распад протона, и для обнаружения такого распада было сооружено несколько детекторов. Хотя самого распада пока не наблюдалось, нижняя граница периода полураспада у протона оценивается величиной 10 32 лет (значительно превышающей возраст Вселенной). С появлением более чувствительных датчиков, возможно, удастся обнаружить распад протона или же придется отодвинуть нижнюю границу периода его полураспада.

      Возможны ли сверхпроводники при высокой температуре?

      Сверхпроводимость появляется при падении у металла электрического сопротивления до нуля. В таких условиях установившийся в проводнике электрический ток течет без потерь, которые свойственны обычному току при прохождении в проводниках вроде медного провода. Явление сверхпроводимости впервые наблюдалось при крайне низкой температуре (чуть выше абсолютного нуля, - 273 °C). В 1986 году ученым удалось сделать сверхпроводящими материалы при температуре кипения жидкого азота (-196 °C), что уже допускало создание промышленных изделий. Механизм данного явления понят еще не до конца, но исследователи пытаются добиться сверхпроводимости при комнатной температуре, что позволит уменьшить потери электроэнергии.

      Проблемы химии

      Как состав молекулы определяет ее облик?

      Знание орбитального строения атомов в простых молекулах позволяет довольно легко определить внешний вид молекулы. Однако теоретические исследования облика сложных молекул, особенно биологически важных, пока не проводились. Один из аспектов данной проблемы - укладка белков, рассматриваемая в Списке идей, 8.

      Каковы химические процессы при раке?

      Биологические факторы вроде наследственности и внешней среды, вероятно, играют большую роль в развитии рака. Зная происходящие в раковых клетках химические реакции, возможно, удастся создать молекулы для прерывания этих реакций и выработки у клеток сопротивляемости раку.

      Как молекулы обеспечивают связь в живых клетках?

      Для оповещения в клетках задействуются молекулы нужной формы, когда через «подгонку» в виде комплиментарности и происходит передача сообщения. Белковые молекулы наиболее важны, так что вид их укладки и определяет их облик [конформацию]. Поэтому более глубокое знание белковой укладки поможет решить вопрос со связью.

      Где на молекулярном уровне задается старение клетки?

      Другая биохимическая проблема старения, возможно, связана с ДНК и белками, занятыми «починкой» ДНК, которая урезается в ходе неоднократной репликации (см.: Список идей, 9. Генетические технологии).

      Проблемы биологии

      Как развивается целый организм из одной оплодотворенной яйцеклетки?

      На данный вопрос, похоже, удастся ответить, как только будет решена главная задача из гл. 4: каково устроение и предназначение протеома? Конечно, каждому организму свойственны свои особенности в устроении белков и их предназначении, но наверняка удастся отыскать и много общего.

      Что вызывает массовые вымирания?

      За последние 500 млн. лет пять раз происходило полное исчезновение видов. Наука продолжает доискиваться причин этого. Последнее вымирание, случившееся 65 млн. лет назад, на рубеже мелового и третичного периодов, связано с исчезновением динозавров. Как ставит вопрос Дэвид Роп в книге Вымирание: подкачали гены или удача? (см.: Источники для углубленного изучения), вызвано ли вымирание большинства живших в ту пору организмов генетическими факторами или же неким катаклизмом? Согласно выдвинутой отцом и сыном, Луисом и Вальтером, Альваресами гипотезе, 65 млн. лет назад на Землю упал огромный метеорит (примерно 10 км в поперечнике). Произведенный им удар поднял огромные облака пыли, которые стали помехой фотосинтезу, что привело к гибели многих растений, а значит, и составляющих одну пищевую цепочку животных, вплоть до громадных, но уязвимых динозавров. Подтверждение этой гипотезы - большой метеоритный кратер, обнаруженный в южной части Мексиканского залива в 1993 году. Возможно ли, что и предыдущие вымирания были следствием подобных столкновений? Исследования и споры продолжаются.

      Динозавры были теплокровными или холоднокровными животными?

      Британский профессор анатомии Ричард Оуэн ввел понятие «динозавр» (что значит «ужасные ящеры») в 1841 году, когда было найдено всего три неполных скелета. Воссозданием облика вымерших животных занялся британский художник-анималист и ваятель Бенджамин Уотерхаус Гаукинс. Поскольку первые найденные особи имели зубы, как у игуаны, его чучела напоминали огромных игуан, вызвав настоящий переполох среди посетителей.

      А ведь ящерицы холоднокровные пресмыкающиеся, и поэтому сначала решили, что таковыми были и динозавры. Затем несколько ученых предположили, что по меньшей мере некоторые динозавры относились к теплокровным животным. Доказательств не было вплоть до 2000 года, когда в Южной Дакоте обнаружили окаменевшее сердце динозавра. Имевшее четырехкамерное устройство, это сердце подтверждает предположение о теплокровных динозаврах, поскольку в сердце ящериц всего три камеры. Однако, чтобы убедить остальной мир в верности такого предположения, необходимы дополнительные свидетельства.

      Что лежит в основе человеческого сознания?

      Будучи предметом изучения гуманитарных наук, данный вопрос выходит далеко за рамки настоящей книги, однако многие наши научные коллеги берутся за его изучение.

      Как и следовало ожидать, существует несколько подходов к трактовке человеческого сознания. Сторонники редукционизма утверждают, что мозг представляет собой огромное множество взаимодействующих молекул и что в итоге мы разгадаем правила их работы (см. статью Крика и Коха «Проблема сознания» [В мире науки. 1992. № 11–12]).

      Другой подход восходит к квантовой механике. Согласно ему, мы не в состоянии постичь нелинейность и непредсказуемость работы мозга, пока не уясним связи между атомным и макроскопическим уровнями поведения материи (см. книгу Роджера Пенроуза Новый ум короля: О компьютерах, мышлении и законах физики [М., 2003]; а также Тени разума: В поисках науки о сознании. [М., 2003]).

      В соответствии с давним подходом человеческому уму присуща мистическая составляющая, недоступная научному объяснению, так что наука вообще не способна постичь человеческое сознание.

      В связи с недавней работой Стивена Вулфрема по созданию упорядоченных образов постоянным применением одних и тех же простых правил (см. гл. 5) не стоит удивляться, что данный подход используют по отношению к человеческому сознанию; так появится еще одна точка зрения.

      Проблемы геологии

      Что вызывает большие перемены в климате Земли наподобие повсеместного потепления и ледниковых периодов?

      Ледниковые периоды, свойственные Земле последние 35 млн. лет, наступали примерно каждые 100 тыс. лет. Ледники надвигаются и отступают по всему северному умеренному поясу, оставляя памятные знаки в виде рек, озер и морей. 30 млн. лет назад, когда по Земле бродили динозавры, климат был значительно теплее нынешнего, так что деревья росли даже вблизи Северного полюса. Как уже говорилось в гл. 5, температура земной поверхности зависит от равновесного состояния приходящей и уходящей энергий. Многие факторы влияют на это равновесие, включая излучаемую Солнцем энергию, обломки в космосе, между которыми пробирается Земля, падающее излучение, изменения земной орбиты, атмосферные изменения и колебания в количестве излучаемой Землей энергии (альбедо).

      Вот в каком направлении ведутся исследования, особенно с учетом разгоревшихся в последнее время споров по поводу парникового эффекта. Теорий много, а истинного понимания происходящего нет до сих пор.

      Можно ли предсказывать извержения вулканов или землетрясения?

      Некоторые вулканические извержения поддаются прогнозу, например недавнее (1991) извержение вулкана Пинатубо на Филиппинах, но другие недоступны для современных средств, по - прежнему заставая вулканологов врасплох (например, извержение вулкана Сент - Хеленс, штат Вашингтон, 18 мая 1980 года). Многие факторы вызывают извержения вулканов. Нет единого теоретического подхода, который был бы верен для всех вулканов.

      Землетрясения предсказать еще труднее, нежели извержения вулканов. Некоторые известные геологи даже сомневаются в возможности составить надежный прогноз (см.: Список идей, 13. Предсказание землетрясений).

      Что происходит в земном ядре?

      Две нижние оболочки Земли, внешнее и внутреннее ядро, недоступны для нас ввиду глубокого залегания и высокого давления, что исключает прямые измерения. Все сведения о земных ядрах геологи получают на основе наблюдений за поверхностью и общей плотностью, составом и магнитными свойствами, а также исследований с помощью сейсмических волн. К тому же помогает изучение железных метеоритов ввиду сходства процесса их формирования с земным. Недавние результаты, полученные с помощью сейсмических волн, выявили различную скорость волн в северо-южном и восточно-западном направлениях, что указывает на слоистое твердое внутреннее ядро.

      Проблемы астрономии

      Одиноки ли мы во Вселенной?

      Несмотря на отсутствие каких-либо экспериментальных свидетельств существования внеземной жизни, теорий на этот счет хватает с избытком, как и попыток обнаружить весточки от далеких цивилизаций.

      Как эволюционируют галактики?

      Как уже упоминалось в гл. 6, Эдвин Хаббл классифицировал все известные галактики согласно их внешнему облику. Несмотря на тщательность описания их нынешнего состояния, данный подход не позволяет понять эволюцию галактик. Выдвинуто несколько теорий, призванных объяснить формирование спиральных, эллиптических и неправильных галактик. Эти теории зиждутся на физике газовых облаков, предшествовавших галактикам. Моделирование на суперЭВМ позволило кое-что уяснить, но пока не привело к единой теории образования галактик. Создание такой теории требует дополнительных исследований.

      Распространены ли сходные с Землей планеты?

      Математические модели предсказывают существование сходных с Землей планет от единиц до миллионов в пределах Млечного Пути. Мощные телескопы обнаружили более 70 планет за пределами Солнечной системы, но большинство из них величиной с Юпитер или крупнее. По мере совершенствования телескопов удастся отыскать и другие планеты, что поможет определить, какая из математических моделей больше соответствует действительности.

      Каков источник всплесков Y-излучения?

      Примерно один раз в сутки наблюдается сильнейшее γ-излучение, которое зачастую оказывается мощнее всех прочих, взятых вместе (γ-лучи схожи с видимым светом, но у них значительно выше частота и энергия). Данное явление впервые зафиксировано в конце 1960-х, но о нем не сообщали до 1970-х годов, поскольку все датчики использовались для контроля за соблюдением запрета на проведение ядерных испытаний.

      Поначалу астрономы считали, что источники этих выбросов находятся в пределах Млечного Пути. Высокаяинтенсивность излучения вызвала предположение о близости ее источников. Но по мере накопления данных становилось очевидным, что эти выбросы шли отовсюду, а не были сосредоточены в плоскости Млечного Пути.

      Зафиксированная в 1997 году благодаря космическому телескопу Хаббла вспышка указывала на то, что она исходила из периферии слабо светящейся галактики, удаленной на несколько миллиардов световых лет. Поскольку источник находился вдали от центра галактики, он вряд ли был черной дырой. Как считают, эти всплески γ- излучения исходят от обычных звезд, содержащихся в диске галактики, возможно, вследствие столкновения нейтронных звезд или иных, еще нам неизвестных небесных тел.

      Почему Плутон столь разительно непохож на все прочие планеты?

      Четыре внутренние планеты - Меркурий, Венера, Земля и Марс - относительно невелики, каменисты и близки к Солнцу. Четыре внешние планеты - Юпитер, Сатурн, Уран и Нептун - велики, газообразны и удалены от Солнца. Теперь о Плутоне. Плутон мал (подобно внутренним планетам) и удален от Солнца (подобно внешним планетам). В этом смысле Плутон выпадает из общего ряда. Он обращается вокруг Солнца поблизости от области, именуемой поясом Койпера, содержащим много тел, сходных с Плутоном (некоторые астрономы называют их Плутино).

      Недавно несколько музеев решили лишить Плутона статуса планеты. Пока не удастся нанести на карту больше других тел из пояса Койпера, споры вокруг статуса Плутона не утихнут.

      Каков возраст Вселенной?

      Возраст Вселенной можно оценить несколькими способами. Одним способом возраст химических элементов в составе Млечного Пути оценивается по результатам радиоактивного распада элементов с известным периодом полураспада на основе предположения, что элементы синтезируются (внутри сверхновых больших звезд) с постоянной скоростью. По данному способу возраст Вселенной определен 14,5±3 млрд. лет.

      Другой способ включает оценку возраста звездных скоплений на основе некоторых допущений относительно поведения и удаления скоплений. Возраст самых древних скоплений исчисляется 11,5± 1,3 млрд. лет, а для Вселенной - 11–14 млрд.

      Возраст Вселенной, определяемый по скорости ее расширения и расстоянию до самых удаленных объектов, составляет 13–14 млрд. лет. Недавнее открытие ускоренного расширения Вселенной (см. гл. 6) делает эту величину более неопределенной.

      Недавно разработан еще один метод. Космический телескоп Хаббла, работая на пределе своих возможностей, измерил температуру старейших белых карликов в шаровом скоплении М4. (Этот способ схож с оценкой времени, прошедшего после прогорания костра, по температуре золы.) Выходило, что возраст древнейших белых карликов составляет 12–13 млрд. лет. Если предположить, что первые звезды образовались не ранее, чем через 1 млрд. лет после «большого взрыва», возраст Вселенной составляет 13–14 млрд. лет, а оценка служит проверкой показателей, полученных другими методами.

      В феврале 2003 года получены данные с уилкинсоновского зонда микроволновой анизотропии (WMAP), позволившие наиболее точно вычислить возраст Вселенной: 13,7±0,2 млрд. лет.

      Существуют ли множественные вселенные?

      В соответствии с одним возможным решением рассмотренной в гл. 6 проблемы ускоренного расширения Вселенной получается множество вселенных, населяющих обособленные «браны» (многомерные мембраны). При всей своей умозрительности данная идея дает широкий простор для всевозможных домыслов. Более подробно о множественных вселенных можно узнать из книги Мартина Риса Наша космическая обитель.

      Когда Земле предстоит очередная встреча с астероидом?

      О Землю постоянно ударяются космические осколки. И поэтому так важно знать, какой величины небесные тела падают на нас и сколь часто. Тела с поперечником 1 м входят в атмосферу Земли несколько раз в месяц. Они часто взрываются на большой высоте, выделяя энергию, равную взрыву небольшой атомной бомбы. Примерно один раз в столетие к нам прилетает тело 100 м в поперечнике, оставляя после себя большую память (ощутимый удар). После взрыва подобного небесного тела в 1908 году над сибирской тайгой, в бассейне реки Подкаменная Тунгуска [Красноярский край], были повалены деревья на площади около 2 тыс. км 2 .

      Удар небесного тела с поперечником 1 км, случающийся раз в миллион лет, может привести к огромным разрушениям и даже вызвать климатические изменения. Столкновение с небесным телом размером 10 км в поперечнике, вероятно, и привело к исчезновению динозавров на рубеже меловой и третичной эпох 65 млн. лет назад. Хотя тело такого размера может появиться лишь раз в 100 млн. лет, на Земле уже предпринимают шаги, чтобы не быть застигнутыми врасплох. Разрабатываются проекты «Околоземные объекты» (NEOs) и «Наблюдение за околоземными астероидами» (NEAT), в соответствии с которыми к 2010 году удастся отслеживать 90 % астероидов с поперечником более 1 км, общее число которых, по различным оценкам, находится в пределах 500-1000. Другая программа, «Spacewatch», осуществляемая Аризонским университетом, состоит в наблюдении за небом в поисках возможных «кандидатов» на столкновение с Землей.

      За более подробными сведениями обращайтесь на узлы Всемирной Паутины: http://neat.jpl . nasa. gov, http://neo.jpl.nasa.gov и http://apacewatch.Ipl . arizona. edu/

      Что было до «большого взрыва»?

      Поскольку время и пространство ведут свой отчет с «большого взрыва», понятие «до» не имеет никакого смысла. Это равносильно вопросу, что находится северней Северного полюса. Или, как бы выразилась американская писательница Гертруда Стайн, нет никакого «затем» затем. Но подобные трудности не останавливают теоретиков. Возможно, до «большого взрыва» время было мнимым; вероятно, не было вообще ничего, и Вселенная возникла из флуктуации вакуума; или же произошло столкновение с другой «браной» (см. затронутый ранее вопрос о множественных вселенных). Таким теориям трудно найти экспериментальное подтверждение, поскольку огромная температура первоначального огненного шара не допускала создания каких - либо атомных или субатомных образований, которые могли бы существовать до начала расширения Вселенной.

      Примечания:

      Оккама бритва - принцип, согласно которому всему следует искать наиболее простое истолкование; чаще всего этот принцип формулируется так: «Без необходимости не следует утверждать многое» (pluralitas non est ponenda sine necessitate) или: «То, что можно объяснить посредством меньшего, не следует выражать посредством большего» (frustra fit per plura quod potest fieri per pauciora). Обычно приводимая историками формулировка «Сущностей не следует умножать без необходимости» (entia non sunt multiplicandasine necessitate) - в сочинениях Оккама не встречается (это слова Дюрана из Сен-Пурсена, ок. 1270–1334 - французского богослова и доминиканского монаха; очень схожее выражение впервые встречается у французского монаха-францисканца Одо Риго, ок. 1205–1275).

      Так называемые топологические туннели. Другие названия этих гипотетических объектов - мосты Эйнштейна - Розена (1909–1995), Подольского (1896–1966), горловины Шварцшильда (1873–1916). Туннели могут связывать как отдельные, сколь угодно отдаленные области пространства нашей Вселенной, так и области с различными моментами начала ее раздувания. В настоящее время продолжается дискуссия о реализуемости туннелей, об их проходимости и эволюции.

      Койпер Джерард Петер (1905–1973) - нидерландский и американский астроном. Открыт спутник Урана - Миранду (1948), спутник Нептуна - Нереиду (1949), углекислым газ в атмосфере Марса, атмосферу у спутника Сатурна Титана. Составил несколько детальные атласов фотографий Луны. Выявил много двойных звезд и белых карликов.

      Спутник, названным в память об инициаторе данного эксперимента - астрофизике Дэвиде Т. Уилкинсоне. Вес 840 кг. Быт запущен в июне 2001 года на околосолнечную орбиту, в точку Лагранжа L2 (1,5 млн. км от Земли), где гравитационные силы Земли и Солнца равны друг другу и условия прецизионные наблюдений всего неба наиболее благоприятны. От Солнца, Земли и Луны (наиболее близких источников тепловые шумов) приемная аппаратура защищена большим круглым экраном, на освещенной стороне которого размещены солнечные батареи. Такая ориентация сохраняется в течение всего полета. Два приемные зеркала площадью 1,4x1,6 м, поставленные «спина к спине», просматривают небо в стороне от оси ориентации. В результате вращения станции вокруг собственной оси за сутки просматривается 30 % небесной сферы. Разрешающая способность WMAP в 30 раз выше, чем у предыдущего спутника СОВЕ (Cosmic Background Explorer), запущенного НАСА в 1989 году. Размер измеряемой ячейки на небе равен 0,2x0,2°, что сразу сказалось на точности небесные карт. Во много раз повысилась и чувствительность приемной аппаратуры. Например, массив данных СОВЕ, полученных за 4 года, в новом эксперименте набирается всего за 10 дней.

      В течение нескольких секунд наблюдался ослепительный яркий болид, перемещавшийся по небу с юго-востока на северо-запад. На пути движения болида, который был виден на огромной территории Восточной Сибири (в радиусе до 800 км), остался мощный пылевой след, сохранявшийся в течение нескольких часов. После световых явлений был слышен взрыв на расстоянии свыше 1000 км. Во многих селениях ощущалось сотрясение почвы и построек, подобное землетрясению, раскалывались оконные стекла, с полок падала домашняя утварь, качались висевшие предметы и т. д. Многие люди, а также домашние животные были сбиты с ног воздушной волной. Сейсмографы в Иркутске и в ряде мест Западной Европы зарегистрировали сейсмическую волну. Воздушная взрывная волна была зафиксирована на барограммах, полученных на многих сибирских метеорологических станциях, в Петербурге и ряде метеорологических станций Великобритании. Эти явления наиболее полно объясняет кометная гипотеза, согласно которой они были вызваны вторжением в земную атмосферу небольшой кометы, двигавшейся с космической скоростью. По современным представлениям, кометы состоят из замерзших воды и различных газов с примесями включений никелистого железа и каменистого вещества. Г. И. Петров в 1975 году определил, что «тунгусское тело» было весьма рыхлым и не более чем в 10 раз превышало плотность воздуха у поверхности Земли. Оно представляло собой рыхлый ком снега радиусом 300 м и плотностью менее 0,01 г/см. На высоте около 10 км тело превратилось в газ, рассеявшийся в атмосфере, что объясняет необычайно светлые ночи в Западной Сибири и в Европе после этого события. Упавшая на землю ударная волна вызвала повал леса.

      Стайн Гертруда (1874–1946) - американская писательница, теоретик литературы!. Модернист. Формально - экспериментальная проза («Становление американцев», 1906–1908, издана 1925) в русле литературы! «потока сознания». Биографическая книга «Автобиография Элис Б. Токлас» (1933). Стайн принадлежит выражение «потерянное поколение» (на рус. яз.: Стайн Г. Автобиография Элис Б. Токлас. СПб., 2000; Стайн Г. Автобиография Элис Б. Токлас. Пикассо. Лекции в Америке. М., 2001).

      Намек на слова there is no there, there из 4-й главы! повести 1936 года (опубликована в 1937 году) «Биография всех», являющейся продолжением ее знаменитого романа «Автобиография Элис Б. Токлас».

      Экология жизни. Помимо стандартных логических задач вроде «если дерево падает в лесу и никто не слышит, издает ли оно звук?», бесчисленные загадки

      Помимо стандартных логических задач вроде «если дерево падает в лесу и никто не слышит, издает ли оно звук?», бесчисленные загадки продолжают волновать умы людей, занятых во всех дисциплинах современной науки и гуманитарных науках.

      Вопросы вроде «существует ли универсальное определение «слова»?», «существует ли цвет физически или проявляется только у нас в умах?» и «какова вероятность, что солнце встанет завтра?» не дают людям спать. Мы собрали эти вопросы во всех сферах: медицине, физике, биологии, философии и математике, и решили задать их вам. Сможете ответить?

      Почему клетки совершают самоубийство?

      Биохимическое событие, известное как апоптоз, иногда называют «запрограммированной смертью клетки» или «клеточным суицидом». По причинам, которые наука в полной мере не осознает, клетки обладают возможностью «решить умереть» весьма организованным и ожидаемым образом, который полностью отличается от некроза (клеточной смерти, вызванной болезнью или травмой). Порядка 50-80 миллиардов клеток умирают в результате запрограммированной смерти клеток в человеческом организме каждый день, но механизм, который за ними стоит, и даже само это намерение непонятны в полной мере.

      С одной стороны, слишком много запрограммированных смертей клеток приводит к атрофии мышц и к мышечной слабости, с другой же - отсутствие должного апоптоза позволяет клеткам пролиферировать, что может привести к раку. Общая концепция апоптоза была впервые описана немецким ученым Карлом Фогтом в 1842 году. С тех пор в понимании этого процесса был достигнут нехилый прогресс, но полноценного объяснения ему так и нет.

      Вычислительная теория сознания

      Некоторые ученые приравнивают деятельность ума к способу, которым компьютер обрабатывает информацию. Таким образом, в середине 60-х годов была разработана вычислительная теория сознания, и человек начал бороться с машиной всерьез. Проще говоря, представьте, что ваш мозг - это компьютер, а сознание - операционная система, которая им управляет.

      Если погрузиться в контекст информатики, аналогия будет простой: в теории, программы выдают данные, основанные на серии входной информации (внешние раздражители, взгляд, звук и т. д.) и памяти (которую можно одновременно посчитать физическим жестким диском и нашей психологической памятью). Программы управляются алгоритмами, которые имеют конечное число шагов, повторяющихся в соответствии с различными вводными. Как и мозг, компьютер должен делать репрезентации того, что не может физически рассчитать - и это один из сильнейших аргументов в пользу этой теории.

      Тем не менее вычислительная теория отличается от репрезентативной теории сознания тем, что не все состояния являются репрезентативными (вроде депрессии), а значит, и не смогут отвечать на воздействие компьютерного характера. Но эта проблема философская: вычислительная теория сознания работает отлично, пока речь не заходит о «перепрограммировании» мозгов, которые в депрессии. Мы не можем сбросить себя до заводских настроек.

      Сложная проблема сознания

      В философских диалогах «сознание» определяется как «квалиа» и проблема квалиа будет преследовать человечество, наверное, всегда. Квалиа описывает отдельные проявления субъективного сознательного опыта - например, головную боль. Мы все испытывали эту боль, но нет никакого способа измерить, испытывали ли мы одинаковую головную боль, и вообще, был ли этот опыт единым, ведь опыт боли основан на нашем восприятии ее.

      Хотя было проделано множество научных попыток определить сознание, никто так и не разработал общепринятую теорию. Некоторые философы подвергали сомнению саму возможность этого.

      Проблема Гетье

      Проблема Гетье звучит так: «Является ли обоснованное истинное убеждение знанием?». Эта логическая головоломка входит в число самых неприятных, потому что требует от нас задуматься о том, является ли истина универсальной константой. Также она поднимает массу мысленных экспериментов и философских аргументов, в том числе и «обоснованное истинное убеждение»:

      Субъект А знает, что предложение Б истинно тогда и только тогда, если:

      Б является истиной,

      и А считает, что Б является истиной,

      и А убежден, что вера в истинность Б обоснована.

      Критики проблем вроде Гетье считают, что невозможно обосновать что-то, что не является истиной (поскольку «истина» считается понятием, которое возводит аргумент в незыблемый статус). Сложно определить не только что для кого-то значит истинность, но и что значит вера в то, что это так. И это серьезно повлияло на все, от криминалистики до медицины.

      Все цвета - у нас в голове?

      Одним из самых сложных в человеческом опыте остается восприятие цвета: действительно ли физические объекты в нашем мире обладают цветом, который мы распознаем и обрабатываем, или же процесс наделения цветом происходит исключительно у нас в головах?

      Мы знаем, что существование цветов обязано разным длинам волн, но когда дело доходит до нашего восприятия цвета, нашей общей номенклатуры и простого факта, что наши головы, вероятно, взорвутся, если мы вдруг встретимся с никогда не виданным доселе цветом в нашей универсальной палитре, эта идея продолжает удивлять ученых, философов и всех остальных.

      Что такое темная материя?

      Астрофизики знают, чем темная материя не является, но это определение их совсем не устраивает: хотя мы не можем видеть ее даже с помощью самых мощных телескопов, мы знаем, что во Вселенной ее больше, чем обычной материи. Она не поглощает и не излучает свет, но разница в гравитационных эффектах крупных тел (планет и т. п.) навела ученых на мысль, что что-то невидимое играет роль в их движении.

      Теория, впервые предложенная в 1932 году, сводилась по большей части к проблеме «недостающей массы». Существование черной материи остается недоказанным, но научное сообщество вынуждено принимать ее существование как факт, чем бы она ни была.

      Проблема восхода солнца

      Какова вероятность того, что завтра взойдет солнце? Философы и статистики задаются этим вопросом тысячелетия, пытаясь вывести неопровержимую формулу для этого ежедневного события. Этот вопрос предназначен для демонстрации ограничений теории вероятности. Трудность возникает, когда мы начинаем задумываться о том, что есть много различий между предварительным знанием одного человека, предварительным знанием человечества и предварительным знанием Вселенной того, встанет ли солнце.

      Если p - это долгосрочная частота восходов солнца, и к p применяется равномерное распределение вероятностей, тогда величина p увеличивается с каждым днем, когда солнце на самом деле встает и мы видим (личность, человечество, Вселенная), что это происходит.

      137 элемент

      Названный в честь Ричарда Фейнмана, предлагаемый окончательный элемент периодической таблицы Менделеева «фейнманиум» представляет собой теоретический элемент, который может стать последним возможным элементом; чтобы выйти за пределы №137, элементам придется двигаться быстрее скорости света. Выдвигались предположения, что элементам выше №124 не будет хватать стабильности на существование в течение более нескольких наносекунд, а значит такой элемент, как фейнманиум, будет уничтожаться в процессе спонтанного деления, прежде чем его можно будет изучить.

      Что еще более интересно, так это то, что номер 137 был не просто так выбран в честь Фейнмана; он считал, что этот номер обладает глубоким смыслом, так как «1/137 = почти точно значению так называемой константы тонкой структуры, безразмерной величины, которая определяет силу электромагнитного взаимодействия».

      Большим вопросом остается, сможет ли такой элемент существовать за пределами сугубо теоретического и произойдет ли это на нашем веку?

      Существует ли универсальное определение слова «слово»?

      В лингвистике слово - это небольшое высказывание, которое может обладать каким-либо смыслом: в практическом или буквальном смысле. Морфема, которая чуть меньше, но с помощью которой все еще можно сообщать смысл, в отличие от слова, не может оставаться особняком. Вы можете сказать «-ство» и понять, что это значит, но едва ли разговор из таких обрезков будет иметь смысл.

      Каждый язык в мире имеет свой собственный лексикон, который делится на лексемы, являющиеся формами отдельных слов. Лексемы чрезвычайно важны для языка. Но опять же, в более общем смысле, мельчайшей единицей речи остается слово, которое может стоять особняком и будет иметь смысл; правда, остаются проблемы с определением, к примеру, частиц, предлогов и союзов, поскольку они особым смыслом вне контекста не обладают, хотя и остаются словами в общем смысле.

      Паранормальные способности за миллион долларов

      С момента начала в 1964 году порядка 1000 человек приняли участие в «Паранормальном испытании» (Paranormal Challenge), но никто так и не взял приз. Образовательный фонд Джеймса Рэнди предлагает миллион долларов любому, кто сможет научно подтвердить сверхъестественные или паранормальные способности. На протяжении многих лет масса медиумов пытались проявить себя, но им категорически отказывали. Чтобы все удалось, претендент должен получить одобрение от учебного института или другой организации соответствующего уровня.

      Хотя ни один из 1000 претендентов не смог доказать наличие наблюдаемых психических паранормальных способностей, которые можно было засвидетельствовать научно, Рэнди сказал, что «очень немногие» из конкурсантов посчитали, что их провал был обусловлен отсутствием талантов. По большей части все сводили неудачи к нервозности.

      Проблема в том, что этот конкурс едва ли кто-нибудь когда-нибудь выиграет. Если кто-то будет обладать сверхъестественными способностями, это значит, что их нельзя объяснить естественным научным подходом. Улавливаете?опубликовано

      10 нерешённых проблем современной физики
      Ниже мы приведем список нерешенных проблем современной физики.

      Некоторые из этих проблем носят теоретический характер. Это означает, что существующие теории оказываются неспособными объяснить определённые наблюдаемые явления или экспериментальные результаты.

      Другие проблемы являются экспериментальными, а это означает, что имеются трудности в создании эксперимента по проверке предлагаемой теории или по более подробному исследованию какого-либо явления.

      Некоторые из этих проблем тесно взаимосвязаны. Например, дополнительные измерения или суперсимметрия могут решить проблему иерархии. Считается, что полная теорияквантовой гравитации способна ответить на бо́льшую часть из перечисленных вопросов.

      Каким будет конец Вселенной?

      Разгадка во многом зависит от тёмной энергии, которая остаётся неизвестным членом уравнения.

      Тёмная энергия ответственна за ускоряющееся расширение Вселенной, но ее происхождение — тайна, покрытая мраком. Если тёмная энергия постоянна в течение долгого времени, нас, вероятно, ждёт «большое замораживание»: Вселенная продолжит расширяться всё быстрее, и в конечном счёте галактики настолько удалятся друг от друга, что нынешняя пустота космоса покажется детской забавой.


      Если тёмная энергия возрастает, расширение станет настолько быстрым, что увеличится пространство не только между галактиками, но и между звёздами, то есть сами галактики будут разорваны; этот вариант называется «большим разрывом».

      Ещё один сценарий состоит в том, что тёмная энергия уменьшится и уже не сможет противодействовать силе тяжести, что заставит Вселенную свернуться («большое сжатие»).

      Ну а суть в том, что, как бы ни разворачивались события, мы обречены. До этого ещё, впрочем, миллиарды или даже триллионы лет — достаточно, чтобы разобраться в том, как же всё-таки погибнет Вселенная.

      Квантовая гравитация

      Несмотря на активные исследования, теория квантовой гравитации пока не построена. Основная трудность в её построении заключается в том, что две физические теории, которые она пытается связать воедино, — квантовая механика и общая теория относительности (ОТО) — опираются на разные наборы принципов.

      Так, квантовая механика формулируется как теория, описывающая временну́ю эволюцию физических систем (например атомов или элементарных частиц) на фоне внешнегопространства-времени .

      В ОТО внешнего пространства-времени нет — оно само является динамической переменной теории, зависящей от характеристик находящихся в нём классических систем.

      При переходе к квантовой гравитации, как минимум, нужно заменить системы на квантовые (то есть произвести квантование). Возникающая связь требует какого-то квантования геометрии самого пространства-времени, причём физический смысл такого квантования абсолютно неясен и сколь-либо успешная непротиворечивая попытка его проведения отсутствует.

      Даже попытка провести квантование линеаризованной классической теории гравитации (ОТО) наталкивается на многочисленные технические трудности — квантовая гравитация оказывается неперенормируемой теорией вследствие того, что гравитационная постоянная является размерной величиной.

      Ситуация усугубляется тем, что прямые эксперименты в области квантовой гравитации, из-за слабости самих гравитационных взаимодействий, недоступны современным технологиям. В связи с этим в поиске правильной формулировки квантовой гравитации приходится пока опираться только на теоретические выкладки.

      Бозон Хиггса не имеет абсолютно никакого смысла. Почему же он существует?

      Бозон Хиггса объясняет, как все остальные частицы приобретают массу, но в то же время поднимает множество новых вопросов. Например, почему бозон Хиггса взаимодействует со всеми частицами по-разному? Так, t-кварк взаимодействует с ним сильнее, чем электрон, из-за чего масса первого намного выше, чем у второго.

      Кроме того, бозон Хиггса — первая элементарная частица с нулевым спином.

      «Перед нами совершенно новая область физики элементарных частиц, — говорит учёный Ричард Руис  — Мы понятия не имеем, какова её природа».

      Излучение Хокинга

      Производят ли чёрные дыры тепловое излучение, как это предсказывает теория? Содержит ли это излучение информацию об их внутренней структуре или нет, как следует из оригинального расчета Хокинга?


      Почему случилось так, что Вселенная состоит из материи, а не антиматерии?

      Антиматерия — та же материя: она обладает точно такими же свойствами, как вещество, из которого состоят планеты, звёзды, галактики.

      Отличие только одно — заряд. Согласно современным представлениям, в новорождённой Вселенной того и другого было поровну. Вскоре после Большого взрыва материя и антиматерия аннигилировали (прореагировали с взаимным уничтожением и возникновением других частиц друг друга).

      Спрашивается, как так вышло, что некоторое количество материи всё-таки осталось? Почему именно материя добилась успеха, а антивещество проиграло «перетягивание каната»?

      Чтобы объяснить это неравенство, учёные усердно ищут примеры нарушения CP-инвариантности, то есть процессов, при которых частицы предпочитают распадаться с образованием материи, но не антиматерии.

      «Прежде всего хотелось бы понять, различаются ли нейтринные осцилляции (превращение нейтрино в антинейтрино) между нейтрино и антинейтрино, — говорит поделившаяся вопросом Алисия Мэрино из Колорадского университета. — Ничего подобного до сих пор не наблюдалось, но мы надеемся на следующее поколение экспериментов».

      Теория всего

      Существует ли теория, которая объясняет значения всех фундаментальных физических констант? Существует ли теория, которая объясняет, почему законы физики таковы, как они есть?


      Теория всего— гипотетическая объединённая физико-математическая теория, описывающая все известные фундаментальные взаимодействия.

      Первоначально данный термин использовался в ироническом ключе для обозначения разнообразных обобщённых теорий. Со временем термин закрепился в популяризацияхквантовой физики для обозначения теории, которая бы объединила все четыре фундаментальные взаимодействия в природе.

      В течение двадцатого века было предложено множество «теорий всего», но ни одна из них не смогла пройти экспериментальную проверку, или существуют значительные затруднения в организации экспериментальной проверки для некоторых из кандидатов.

      Бонус: Шаровая молния

      Какова природа этого явления? Является ли шаровая молния самостоятельным объектом или подпитывается энергией извне? Все ли шаровые молнии имеют одну и ту же природу или существуют разные их типы?


      Шаровая молния — светящийся плавающий в воздухе огненный шар, уникально редкое природное явление.

      Единой физической теории возникновения и протекания этого явления к настоящему времени не представлено, также существуют научные теории, которые сводят феномен к галлюцинациям.

      Существуют около 400 теорий, объясняющих явление, но ни одна из них не получила абсолютного признания в академической среде. В лабораторных условиях похожие, но кратковременные явления удалось получить несколькими разными способами, так что вопрос о природе шаровой молнии остаётся открытым. По состоянию на конец XX века не было создано ни одного опытного стенда, на котором это природное явление искусственно воспроизводилось бы в соответствии с описаниями очевидцев шаровой молнии.

      Широко распространено мнение, что шаровая молния — явление электрического происхождения, естественной природы, то есть представляет собой особого вида молнию, существующую продолжительное время и имеющую форму шара, способного перемещаться по непредсказуемой, иногда удивительной для очевидцев траектории.

      Традиционно достоверность многих свидетельств очевидцев шаровой молнии остаётся под сомнением, в том числе:

      • сам факт наблюдения хоть какого-то явления;
      • факт наблюдения именно шаровой молнии, а не какого-то другого явления;
      • отдельные подробности явления, приводимые в свидетельстве очевидца.

      Сомнения в достоверности многих свидетельств осложняют изучение явления, а также создают почву для появления разных спекулятивно-сенсационных материалов, якобы связанных с этим явлением.

      По материалам: несколько десятков статей из



Похожие статьи