Дуговой разряд. Реферат: Дуговой разряд в газах

Вследствие высокой температуры электроды дуги испускают ослепительный свет, и поэтому электрическая дуга является одним из лучших источников света. Она потребляет всего около 0,3 Вт на канделу и является значительно более экономичной, нежели наилучшие лампы накаливания. Электрическая дуга впервые была использована для освещения в 1875 г. русским инженером-изобретателем Павлом Николаевичем Яблочковым (1847-1894) и получила название «русского света» или «северного света».

Хотя в широкой практике дуговые лампы в настоящее время почти полностью вытеснены лампами накаливания (§ 62), тем не менее в ряде случаев, где требуются очень мощные и яркие источники света, например в прожекторах, при киносъемке и т. п., дуговые лампы применяются очень часто.

Электрическая дуга применяется для сварки металлических деталей (дуговая электросварка). Возможность такого применения дуги была также указана В. В. Петровым и впервые разработана русскими изобретателями Н. Н. Бенардосом (1885 г.) и Н. Г. Славяновым (1890 г.). Свариваемые детали служат положительным электродом; касаясь их углем, соединенным с отрицательным полюсом источника тока, получают между телами и углем дугу, плавящую металл. При этом лицо сварщика, а в особенности глаза, должно быть закрыто толстым стеклом, так как в противном случае невидимое, так называемое ультрафиолетовое излучение, обильно испускаемое дугой, вызывает тяжелое заболевание глаз и кожи. Стекло же не пропускает ультрафиолетовое излучение.

В настоящее время электрическую дугу широко применяют также в промышленных электропечах. В мировой промышленности около 90 % инструментальной стали и почти все специальные стали выплавляются в электрических печах. Многие из таких печей построены по типу дуговых (рис. 161).

Рис. 161. Дуговая плавильная печь: 1 – электроды, 2 – расплавленный металл, 3 – подводка тока

Большой интерес представляет ртутная дуга, горящая в кварцевой трубке, так называемая кварцевая лампа. В этой лампе дуговой разряд происходит не в воздухе, а в атмосфере ртутного пара, для чего в лампу вводят небольшое количество ртути, а воздух откачивают. Свет ртутной дуги чрезвычайно богат невидимыми ультрафиолетовыми лучами, обладающими сильным химическим и физиологическим действием. Чтобы можно было использовать это излучение, лампу делают не из стекла, которое сильно поглощает ультрафиолетовое излучение, а из плавленого кварца. Ртутные лампы широко применяют при лечении разнообразных болезней («искусственное горное солнце»), а также при научных исследованиях как сильный источник ультрафиолетового излучения. Свет ртутной лампы также чрезвычайно вреден для глаз.

ДУГОВОЙ РАЗРЯД

один из типов стационарного электрического разряда в газе, характеризующийся большой плотностью тока и малым падением напряжения (сравнимым с потенциалом ионизации газа). Д. р. может возникнуть в результате электрич. пробоя разрядного промежутка при кратковрем. резком повышении напряжения между электродами. Если пробой происходит при давлении газа, близком к атмосферному, то Д. р. предшествует искровой разряд . Д. р. используется в дуговых печах, в газоразрядных источниках света, при дуговой сварке, в плазматронах и т. д.


Большой энциклопедический политехнический словарь . 2004 .

Смотреть что такое "ДУГОВОЙ РАЗРЯД" в других словарях:

    Самостоятельный квазистационарный электрический разряд в газе, горящий практически при любых давлениях газа, превышающих 10 2 10 4 мм рт. ст., при постоянной или меняющейся с низкой частотой (до 103 Гц) разности потенциалов между электродами. Д.… … Физическая энциклопедия

    дуговой разряд - Самостоятельный электрический разряд, при котором электрическое поле в разрядном промежутке определяется в основном величиной и расположением в нем объемных зарядов и который характеризуется малым катодным падением потенциала (порядка или меньше… … Справочник технического переводчика

    дуговой разряд - дуговой разряд; отрасл. дугообразный разряд; вольтова дуга Электрический разряд, при котором электрическое поле в разрядном промежутке определяется в основном величиной и расположением в нем объемных зарядов, характеризуемый малым катодным… … Политехнический терминологический толковый словарь

    Электрический разряд в газах, характеризуемый большой плотностью тока и малым падением потенциала вблизи катода. Поддерживается термоэлектронной эмиссией или автоэлектронной эмиссией с катода. Температура газа в канале дугового разряда при… … Большой Энциклопедический словарь

    ДУГОВОЙ РАЗРЯД - один из видов самостоятельного электрического разряда в газе, характеризуемый высокой плотностью тока. Нагретый до высокой температуры ионизированный газ в столбе между электродами, к которым подведено электрическое напряжение, находится в… … Большая политехническая энциклопедия

    Один из типов стационарного электрического разряда в газах (См. Электрический разряд в газах). Впервые наблюдался между двумя угольными электродами в воздухе в 1802 В. В. Петровым и независимо в 1808 09 Г. Дэви. Светящийся токовый канал… … Большая советская энциклопедия

    дуговой разряд - lankinis išlydis statusas T sritis fizika atitikmenys: angl. arc discharge; electric arc in gas vok. Bogenentladung, f rus. дуговой разряд, m; дуговой разряд в газе, m pranc. décharge d’arc, f; décharge en régime d’arc, f; décharge par arc, f … Fizikos terminų žodynas

    Электрический разряд в газах, горящий практически при любых давлениях газа, превышающих 10 2 10 3 мм рт. ст.; характеризуется большой плотностью тока на катоде и малым падением потенциала. Впервые наблюдался в 1802 В. В. Петровым в воздухе… … Энциклопедический словарь

    Электрическая дуга в воздухе Электрическая дуга физическое явление, один из видов электрического разряда в газе. Синонимы: Вольтова дуга, Дуговой разряд. Впервые была описана в 1802 году русским ученым В. В. Петровым. Электрическая дуга является… … Википедия

    дуговой разряд - lankinis išlydis statusas T sritis automatika atitikmenys: angl. arc discharge vok. Bogenentladung, f; Lichtbogenentladung, f rus. дуговой разряд, m pranc. décharge d arc, f; décharge en arc, f … Automatikos terminų žodynas

    дуговой разряд - lankinis išlydis statusas T sritis chemija apibrėžtis Savaiminio elektros išlydžio dujose rūšis. atitikmenys: angl. arc discharge rus. дуговой разряд … Chemijos terminų aiškinamasis žodynas

ВВедение.

Свойства дугового разряда.

1.Образование дуги.

2. Катодное пятно. Внешний вид и отдельные части

дугового разряда.

3. Распределение потенциала и вольтамперная

характеристика при дуговом разряде.

4. Температура и излучение отдельных частей дугового разряда.

5. Генерация незатухающих колебаний при помощи элек-

трической дуги.

6. Положительный столб дугового разряда при высоком

и сверхвысоком давлении.

III. Применение дугового разряда.

1. Современные методы электрообработки.

2. Электродуговая сварка.

3. Плазменная технология.

4. Плазменная сварка.
IV. Заключение.



Дуговой разряд в виде так называемой электрической (или вольтовой) дуги был впервые обнаружен в 1802 году русским учёным профессором физики Военно-медико-хирургической академии в Петербурге, а впоследствии академиком Петербургской Академии наук Василием Владимировичем Петровым. Петров следующими словами описывает в одной из изданных им книг свои первые наблюдения над электрической дугой:

«Если на стеклянную плитку или на скамеечку со стеклянными ножками будут положены два или три древесных угля... и если металлическими изолированными направлятелями...сообщенными с обоими полюсами огромной батареи, приближать оные один к другому на расстояние от одной до трёх линий,то является между ними весьма яркий белого цвета свет или пламя, от которого оные угли скорее или медлительнее загораются и от которого тёмный покой довольно ясно освещен быть может... ».

Путь к электрической дуге начался в глубокой древности. Еще греку Фалесу Милетскому, жившему в шестом веке до нашей эры, было известно свойство янтаря притягивать при натирании легкие предметы-перышки, солому, волосы и даже создавать искорки. Вплоть до семнадцатого века это был единственный способ электризации тел, не имевший никакого практического применения. Ученые искали объяснение этому явлению.

Английский физик Уильям Гильберт (1544-1603) установил, что и другие тела (например, горный хрусталь, стекло), подобно янтарю, обладают свойством притягивать легкие предметы после натирания. Он назвал эти свойства электрическими, впервые введя этот термин в употребление (по-гречески янтарь-электрон).

Бургомистр из Магдебурга Отто фон Герике (1602-1686) сконструировал одну из первых электрических машин. Это была электростатическая машина, представлявшая собой серный шар, укрепленный на оси. Одним из полюсов служил... сам изобретатель. При вращении рукоятки из ладоней довольного бургомистра с легким потрескиванием вылетали синеватые искры. Позднее машину Герике усовершенствовали другие изобретатели. Серный шар был заменен стеклянным, а вместо ладоней исследователя в качестве одного из полюсов приме- нены кожаные подушечки.

Большое значение имело изобретение в восемнадцатом веке лейденской банки-конденсатора, позволившего накапливать электричество. Это был стеклянный сосуд с водой, обернутый фольгой. В воду погружали металлический стержень, пропущенный через пробку.

Американский ученый Бенджамин Франклин (1706-1790) доказал, что вода в собирании электрических зарядов никакой роли не играет, этим свойством обладает стекло-диэлектрик.

Электростатические машины получили довольно широкое распространение, но лишь как забавные вещицы. Были, правда, попытки лечения больных с помощью электричества, однако каков был физиотерапевтический эффект такого лечения, сказать трудно.

Французский физик Шарль Кулон (1736-1806)- основатель электростатики-в 1785 г. установил, что сила взаимодействия электрических зарядов пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними.

В сороковых годах восемнадцатого века Бенджамин Франклин выдвинул теорию о том, что существует электричество только одного рода-особая электрическая материя, состоящая из мельчайших частиц, способных проникать внутрь вещества. Если в теле имеется избыток электрической материи, оно заряжено положительно, при ее недостатке-тело заряжено отрицательно. Франклин ввел в практику знаки «плюс» и «минус»,а также термины: конденсатор, проводник, заряд.

С оригинальными теориями о природе электричества выступили М. В. Ломоносов (1711-1765), Леонард Эйлер (1707-1783), Франц Эпинус (1724-1802) и другие ученые. К концу восемнадцатого века свойства и поведение неподвижных зарядов были достаточно изучены и в какой-то мере объяснены. Однако ничего не было известно об электрическом токе-движущихся зарядах, так как не существовало устройства, которое могло бы заставить двигаться большое количество зарядов. Токи, получаемые от электростатической машины,были слишком малы, их нельзя было измерить.


1. Если в тлеющем разряде увеличивать силу тока, уменьшая внешнее сопротивление, то при большой силе тока напряжение на зажимах трубки начинает падать, разряд быстро развива-ется и превращается в дуговой. В большинстве случаев переход совершается скачком и практически нередко ведёт к короткому замыканию. При подборе сопротивления внешнего контура удаётся стабилизовать переходную форму разряда и наблюдать при определённых давлениях непрерывный переход тлеющего разряда в дугу. Параллельно с падением напряжения между электродами трубки идёт возрастание температуры катода и постепенное уменьшение катодного падения.

Применение обычного способа зажигания дуги путём раздвигания электродов вызвано тем, что дуга горит при сравнительно низких напряжениях в десятки вольт, тогда как для зажигания тлеющего разряда нужно при атмосферном давлении напряжение порядка десятков киловольт. Процесс зажигания при раздвигании электродов объясняется местным нагреванием электродов вследствие образования между ними плохого контакта в момент разрыва цепи.

Вопрос о развитии дуги при разрыве цепи технически важен не только с точки зрения получения «полезных» дуг, но также и с точки зрения борьбы с «вредными» дугами, например с образованием дуги при размыкании рубильника. Пусть L-само- индукция контура, W-его сопротивление, ع-э.д.с. источника тока,U(I)-функция вольтамперной характеристики дуги. Тогда мы должны иметь: ع= L dI/dt+WI+U(I) (1) или

LdI/dt=(ع-WI)-U(I)=∆ (2).

Разность (ع - WI) есть не что иное, как ордината прямой сопротивления АВ (рис.1), а U(I)- ордината характеристики дуги при данном I. Чтобы dI/dt было отрицательно, т.е.Чтобы ток I непременно уменьшался со временем и между электродами рубильника не образовалось стойкой дуги, надо, чтобы



Рис.1. Относительное положение прямой сопротивления и кривой вольтамперной характеристики установившейся дуги для случаев:а)когда дуга пе может возникнуть при разрыве цепи; б)когда дуга возникает при разрыве в интервале силы тока, соответствующем точкам Р и Q.


имело место ∆ع-WI.

Для этого характеристика всеми своими точками должна лежать выше прямой сопротивления (рис. 1, а). Это простое заклю-чение пе учитывает ёмкости в цепи и относится лишь к постоянному току.

Точка пересечения прямой сопротивления с кривой вольт-амперной характеристики установившейся дуги соответствует низшему пределу силы постоянного тока, при котором может возникнуть дуга при разрыве цепи (рис. 1, б). В случае размыкания рубильником дуги переменного тока,потухающей при каждом переходе напряжения через нуль, существенно, чтобы условия,имеющиеся налицо в разрядном промежутке при размы-кании, не допускали нового зажигания дуги при последующем возрастании напряжения источника тока. Для этого требует-ся,чтобы при возрастании напряжения разрядный промежуток был достаточно деионизован. В выключателях сильных перемен-ных токов искусственно добиваются усиленной деионизации путём введения специальных электродов, отсасывающих заря-женные частицы газа благодаря двуполярной диффузии, а также путём применения механического дутья или путём воздействия на разряд магнитным полем. При высоких напряжениях при-меняют масляные выключатели.


2. Катодное пятно, неподвижное на угольном катоде, на поверхности жидкой ртути находится в непрерывном быстром движении. Положение катодного пятна на поверхности жидкой ртути может быть закреплено при помощи металлического штифта, погруженного в ртуть и немного высовывающегося из неё.

В случае небольшого расстояния между анодом и катодом тепловое излучение анода сильно влияет на свойства катод-ного пятна. При достаточно большом расстоянии анода от угольного катода размеры катодного пятна стремятся к неко-торому постоянному предельному значению, и площадь, занима-емая катодным пятном на угольном электроде в воздухе, пропорциональна силе тока и соответствует при атмосферном давлении 470 а/смІ.Для ртутной дуги в вакууме найдено 4000 а/смІ.

При уменьшении давления площадь, занимаемая катодным пятном на угольном катоде, при постоянной силе тока увели-чивается.

Резкость видимой границы катодного пятна объясняется тем, что сравнительно медленному уменьшению температуры с удале-нием от центра пятна соответствует быстрое падение как све-тового излучения, так и термоэлектронной эмиссии, а это равносильно резкой «оптической» и «электрической» границам пятна.

Угольный катод при горении дуги в воздухе заостряется, тогда как на угольном аноде, если разряд не перекрывает всю переднюю площадь анода, образуется круглое углубление-положительный кратер дуги.

Образованно катодного пятна объясняется следующим образом. Распределение пространственных зарядов в тонком слое у катода таково, что здесь разряд требует для своего поддержания тем меньшей разницы потенциалов, чем меньше поперечное сечение канала разряда. Поэтому разряд на катоде должен стягиваться.

Непосредственно к катодному пятну прилегает часть разряда, называемая отрицательной пли катодной кистью или отрицательным пламенем. Длина катодной кисти в дуге при низком давлении определяется тем расстоянием, на которое залетают быстрые первичные электроны, получившие свои ско-рости в области катодного падения потенциала.

Между отрицательной кистью и положительным столбом расположена область, аналогичная фарадееву тёмному пространству тлеющего разряда. В дуге Петрова в воздухе, кроме отрицательной кисти, имеется положи-тельное пламя и ряд ореолов. Спектральный анализ указывает на наличие в этих пламенах и ореолах ряда химических соединений (циана и окислов азота).

Прерывистой формой (даже при пользовании источниками постоянного тока). Он возникает в газе обычно при давлениях порядка атмосферного. В естественных природных условиях искровой разряд наблюдается в виде молний. По внешнему искровой разряд представляет собой пучок ярких зигзагообразных разветвляющихся тонких полосок, мгновенно пронизывающих разрядный промежуток, быстро гаснущих и постоянно...

  • 2.1.3. Условия гашения дуги постоянного тока
  • 2.1.4. Энергия, выделяемая в дуге
  • 2.1.5. Условия гашения дуги переменного тока
  • Лекция № 3
  • 2.1.6. Способы гашения электрической дуги
  • 2.1.7. Дугогасительные устройства постоянного и переменного тока
  • 2.1.8. Применение полупроводниковых приборов для гашения дуги
  • Лекция № 4
  • 2.2. Электрические контакты
  • 2.2.1.Общие сведения
  • 2.2.2. Режимы работы контактов
  • 2.2.3. Материалы контактов
  • 2.2.4. Конструкция твёрдометаллических контактов
  • 2.2.5. Жидкометаллические контакты
  • 2.2.6. Расчёт контактов аппаратов
  • Лекция № 5
  • 2.3. Электродинамические усилия в электрических аппаратах
  • 2.3.1. Общие сведения
  • 2.3.2. Методы расчёта электродинамических усилий (эду)
  • 2.3.3. Усилия между параллельными проводниками
  • 2.3.4. Усилия и моменты, действующие на взаимно перпендикулярные проводники
  • 2.3.5. Усилия в витке, катушке и между катушками
  • Лекция № 6
  • 2.3.6. Усилия в месте изменения сечения проводника
  • 2.3.7. Усилия при наличии ферромагнитных частей
  • 2.3.8. Электродинамические усилия при переменном токе
  • 2.3.9. Электродинамическая стойкость электрических аппаратов
  • 2.3.10. Расчёт динамической стойкости шин
  • Лекция 7
  • 2.4. Нагрев электрических аппаратов
  • 2.4.1. Общие сведения
  • 2.4.2. Активные потери энергии в аппаратах
  • 2.4.3. Способы передачи тепла внутри нагретых тел и с их поверхности
  • 2.4.4. Установившийся режим нагрева
  • 2.4.5. Нагрев аппаратов в переходных режимах
  • 2.4.6. Нагрев аппаратов при коротком замыкании
  • 2.4.7. Допустимая температура частей электрических аппаратов
  • 2.4.8. Термическая стойкость электрических аппаратов
  • Лекция № 8
  • 3.1. Электромагнитные контакторы переменного тока
  • 3.1.1. Назначение контакторов
  • 3.1.2. Классификация контакторов
  • 3.1.3. Область применения контакторов
  • 3.1.4. Узлы контактора и принцип его действия; физические явления, происходящие в электрическом аппарате
  • 3.1.5. Параметры контакторов
  • Лекция № 9
  • 3.1.6. Контакторы переменного тока, их конструкция и параметры
  • 3.1.6.1.Контактная система
  • 3.1.6.2. Электромагнитные системы: физические явления, происходящие в электрических аппаратах
  • 3.1.6.3. Конструкция контакторов переменного тока
  • 3.1.6.4. Контакторы серии кт6600
  • 3.1.6.5. Контакторы серии кт64 и кт65
  • 3.1.6.6.Контакторы серии мк
  • 3.1.6.7. Контакторы переменного тока на напряжение 1140 в
  • 3.1.6.8. Контакторы переменного тока вакуумные
  • 3.1.6.9. Выбор, применение и эксплуатация контакторов
  • Лекция № 10
  • 3.2. Электромагнитные контакторы постоянного тока
  • 3.2.1. Режимы работы контакторов, физические явления, происходящие в электрических аппаратах
  • 3.2.2. Контакторы постоянного тока, их конструкция и параметры
  • 3.2.3. Контакторы серии кпв-600
  • 3.2.4. Контакторы типа ктпв-600
  • 3.2.5. Контакторы типа кмв. Контакторы серии кп81
  • 3.2.6. Выбор электрических аппаратов
  • 3.3.3. Конструкция и схема включения
  • 3.3.4. Магнитные пускатели серии пмл
  • 3.3.5. Пускатели серии пма
  • 3.3.6. Нереверсивные пускатели
  • 3.3.7. Схема включения нереверсивного пускателя
  • 3.3.8. Реверсивный магнитный пускатель
  • 3.3.9. Схема включения реверсивного пускателя
  • 3.3.10. Выбор магнитных пускателей
  • Лекция №12
  • 4.1. Электромагнитные реле
  • 4.1.1. Назначение и область применения реле
  • 4.1.2. Классификация реле
  • 4.1.3.Устройство и принцип действия и электромагнитных реле, физические явления в электрических аппаратах
  • Поляризованные электромагнитные системы
  • 4.1.4. Основные характеристики и параметры реле
  • 4.1.5. Требования, предъявляемые к реле
  • 4.1.6. Согласование тяговых и противодействующих характеристик реле
  • 4.1.7. Электромагнитные реле тока и напряжения для защиты энергосистем, управления и защиты электропривода
  • 4.1.8. Выбор, применение и эксплуатация максимально-токовых реле
  • Iуст.(1,3 – 1,5)Iпуск,
  • I уст 0,75i пуск.
  • 4.2.2. Основные параметры герконового реле
  • 4.2.3. Конструкции герконовых реле
  • 4.2.4. Реле тока на герконе
  • 4.2.5. Поляризованные гр
  • 4.2.6. Управление герконом с помощью ферромагнитного экрана
  • Лекция № 15
  • 5.1. Тяговые электромагниты
  • 5.1.1. Основные понятия, физические явления в электрических аппаратах
  • 5.1.2. Энергия магнитного поля и индуктивность системы
  • 5.1.3. Работа, производимая якорем магнита при перемещении
  • 5.1.4. Вычисление сил и моментов электромагнита
  • 5.1.5. Электромагниты переменного тока
  • 5.1.6. Короткозамкнутый виток
  • 5.1.7. Статические тяговые характеристики электромагнитов и механические характеристики аппаратов
  • Лекция № 17
  • 6.1. Предохранители низкого напряжения
  • 6.1.1. Назначение, принцип действия и устройство предохранителя
  • 6.1.2. Параметры предохранителя
  • 6.1.3. Конструкция предохранителей
  • 6.1.4. Предохранители с гашением дуги в закрытом объёме
  • 6.1.5. Предохранители с мелкозернистым наполнителем (пн-2, прс)
  • 6.1.8. Предохранитель-выключатель
  • 6.1.9. Выбор, применение и эксплуатация предохранителя для защиты электродвигателя и полупроводниковых устройств
  • Лекция № 18
  • 6.2 Автоматические воздушные выключатели (автоматы)
  • 6.2.1. Назначение, классификация и область применения автоматов
  • 6.2.2. Требования, предъявляемые к автоматам
  • 6.2.3. Узлы автомата и принцип его действия, физические явления в электрическом аппарате
  • 6.2.4. Основные параметры автомата
  • 6.4. Изменение тока цепи и напряжения на контактах в процессе отключения
  • 6.2.5. Универсальные и установочные автоматы
  • 6.2.8. Выбор, применение и эксплуатация автоматических воздушных выключателей
  • Лекция № 23
  • 7.4. Токоограничивающие реакторы
  • 7.4.1. Назначение, область применения и принцип работы реактора, физические явления в электрическом аппарате
  • 7.4.2. Основные параметры реактора
  • Лекция № 24
  • 7.5. Разрядники
  • 7.5. Назначение, область применения разрядников
  • 7.5.1. Требования, предъявляемые к разрядникам
  • 7.5.2. Основные параметры разрядников
  • 7.5.4. Конструкции разрядников, физические явления в них
  • 7.5.5. Трубчатые разрядники, физические явления в них
  • 7.5.8. Ограничители перенапряжения, физические явления в электрических аппаратах
  • 7.5.9. Выбор разрядников
  • Лекция № 25
  • 7.6. Предохранители высокого напряжения
  • 7.6.1. Назначение предохранителей
  • 7.6.2. Требования, предъявляемые к предохранителям вн
  • 7.6.3. Принцип действия, устройство и основные параметры предохранителей вн, физические явления в электрических аппаратах
  • 7.6.4. Предохранители с мелкозернистым наполнителем серий пк и пкт
  • 7.6.5. Предохранители серии пктн
  • 7.6.6. Предохранители с автогазовым, газовым и жидкостным гашением дуги
  • 7.6.7. Выбор, применение и эксплуатация предохранителей вн
  • I отк. Пред I кз. Уст лекция № 26
  • 8.1. Измерительные трансформаторы тока (тт)
  • 8.1.1.Назначение, принцип действия, включение трансформатора тока
  • 8.1.2. Основные параметры трансформаторов тока
  • 8.1.3. Режимы работы трансформаторов тока
  • I"1апер,i2апер,I"0апер– кривые апериодической составляющей первичного, вторичного тока и апериодической составляющей намагничивающего тока
  • 8.1.4. Конструкция и принцип действия трансформаторов тока, физические явления в электрическом аппарате
  • 8.1.5. Выбор трансформаторов тока
  • Список рекомендованной литературы
  • Список вопросов кзачетупо ЭиЭа
  • 2.1.1. Свойства дугового разряда

    В коммутационных ЭА, предназначенных для замыкания и размыкания цепи с током, при отключении возникает разряд в газе либо в виде тлеющего разряда, либо в виде дуги. Тлеющий разряд возникает тогда, когда отключаемый ток ниже 0,1 А, а напряжение на контактах достигает величины 250-300 В. Такой разряд встречается либо на контактах маломощных реле, либо как переходная фаза к разряду в виде электрической дуги.

    Если ток в цепи напряжения выше значений = 0,03-0,9 А, то имеет место дуговой разряд. Основные свойства дугового разряда:

    1.Дуговой разряд имеет место только при токах большой величины. Минимальный ток дуги для различных материалов и для металлов составляет 0,5А.

    2. Температура центральной части дуги очень велика и в аппаратах может достигать 6000-25000 К.

    3. Плотность тока на катоде чрезвычайно велика и достигает .

    4. Падение напряжения у катода составляет всего 10-20 В и практически не зависит от тока.

    В дуговом разряде можно различить три характерные области: околокатодную, область столба дуги и околоанодную.

    Электрическая сварочная дуга

    Электрическая сварочная дуга – это длительный электрический разряд в плазме, которая представляет собой смесь ионизированных газов и паров компонентов защитной атмосферы, присадочного и основного металла.

    Дуга получила свое название от характерной формы, которую она принимает при горении между двумя горизонтально расположенными электродами; нагретые газы стремятся подняться вверх и этот электрический разряд изгибается, принимая форму арки или дуги.

    С практической точки зрения дугу можно рассматривать как газовый проводник, который преобразует электрическую энергию в тепловую. Она обеспечивает высокую интенсивность нагрева и легко управляема посредством электрических параметров.

    Общей характеристикой газов является то, что они в нормальных условиях не являются проводниками электрического тока. Однако, при благоприятных условиях (высокая температура и наличие внешнего электрического поля высокой напряженности) газы могут ионизироваться, т.е. их атомы или молекулы могут освобождать или, для электроотрицательных элементов наоборот, захватывать электроны, превращаясь соответственно в положительные или отрицательные ионы. Благодаря этим изменениям газы переходят в четвертое состояние вещества называемого плазмой, которая является электропроводной.

    Возбуждение сварочной дуги происходит в несколько этапов. Например, при сварке МИГ/МАГ, при соприкосновении конца электрода и свариваемой детали возникает контакт между микро выступами их поверхностей. Высокая плотность тока способствует быстрому расплавлению этих выступов и образованию прослойки жидкого металла, которая постоянно увеличивается в сторону электрода, и в конце концов разрывается.

    В момент разрыва перемычки происходит быстрое испарение металла, и разрядный промежуток заполняется ионами и электронами возникающими при этом. Благодаря тому, что к электроду и изделию приложено напряжение электроны и ионы начинают двигаться: электроны и отрицательно заряженные ионы - к аноду, а положительно заряженные ионы – к катоду, и таким образом возбуждается сварочная дуга. После возбуждения дуги концентрация свободных электронов и положительных ионов в дуговом промежутке продолжает увеличиваться, так как электроны на своем пути сталкиваются с атомами и молекулами и "выбивают" из них еще больше электронов (при этом атомы, потерявшие один и более электронов, становятся положительно заряженными ионами). Происходит интенсивная ионизация газа дугового промежутка и дуга приобретает характер устойчивого дугового разряда.

    Через несколько долей секунды после возбуждения дуги на основном металле начинает формироваться сварочная ванна, а на торце электрода – капля металла. И спустя еще примерно 50 – 100 миллисекунд устанавливается устойчивый перенос металла с торца электродной проволоки в сварочную ванну. Он может осуществляться либо каплями, свободно перелетающими дуговой промежуток, либо каплями, которые сначала образуют короткое замыкание, а затем перетекают в сварочную ванну.

    Электрические свойства дуги определяются процессами, протекающими в ее трех характерных зонах – столбе, а также в приэлектродных областях дуги (катодной и анодной), которые находятся между столбом дуги с одной стороны и электродом и изделием с другой.

    Для поддержания плазмы дуги при сварке плавящимся электродом достаточно обеспечить ток от 10 до 1000 ампер и приложить между электродом и изделием электрическое напряжение порядка 15 – 40 вольт. При этом падение напряжения на собственно столбе дуги не превысит нескольких вольт. Остальное напряжение падает на катодной и анодной областях дуги. Длина столба дуги в среднем достигает 10 мм, что соответствует примерно 99% длины дуги. Таким образом, напряженность электрического поля в столбе дуги лежит в пределах от0,1 до 1,0 В/мм. Катодная и анодная области, напротив, характеризуются очень короткой протяженностью (около 0.0001 мм для катодной области, что соответствует длине свободного пробега иона, и 0.001 мм для анодной, что соответствует длине свободного пробега электрона). Соответственно, эти области имеют очень высокую напряженность электрического поля (до 104 В/мм для катодной области и до 103 В/мм для анодной).

    Экспериментально установлено, что для случая сварки плавящимся электродом падение напряжения в катодной области превышает падение напряжения в анодной области: 12 – 20 В и 2 – 8 В соответственно. Учитывая то, что выделение тепла на объектах электрической цепи зависит от тока и напряжения, то становится понятным, что при сварке плавящимся электродом больше тепла выделяется, в той области, на которой падает больше напряжения, т.е. в катодной. Поэтому при сварке плавящимся электродом используется, в основном, обратная полярность подключения тока сварки, когда катодом служит изделие для обеспечения глубокого проплавления основного металла (при этом положительный полюс источника питания подключают к электроду). Прямую полярность используют иногда при выполнении наплавок (когда проплавление основного металла, напротив, желательно чтобы было минимальным).

    В условиях сварки ТИГ (сварка неплавящимся электродом) катодное падение напряжения, напротив, значительно ниже анодного падения напряжения и, соответственно, в этих условиях больше тепла выделяется уже на аноде. Поэтому при сварке неплавящимся электродом для обеспечения глубокого проплавления основного металла изделие подключают к положительной клемме источника питания (и оно становится анодом), а электрод подключают к отрицательной клемме (таким образом, обеспечивая еще и защиту электрода от перегрева).

    При этом, независимо от типа электрода (плавящийся или неплавящийся) тепло выделяется, в основном, в активных областях дуги (катодной и анодной), а не в столбе дуги. Это свойство дуги используется для того, чтобы плавить только те участки основного металла, на которые направляется дуга.

    Те части электродов, через которые проходит ток дуги, называют активными пятнами (на положительном электроде – анодным, а на отрицательном – катодным пятном). Катодное пятно является источником свободных электронов, которые способствуют ионизации дугового промежутка. В то же время к катоду устремляются потоки положительных ионов, которые его бомбардируют и передают ему свою кинетическую энергию. Температура на поверхности катода в области активного пятна при сварке плавящимся электродом достигает 2500 … 3000 °С.

    Строение дуги Lк - катодная область; Lа - анодная область (Lа = Lк = 10 -5 -10 -3 см); Lст - столб дуги; Lд - длина дуги; Lд = Lк + Lа + Lст

    К анодному пятну устремляются потоки электронов и отрицательно заряженных ионов, которые передают ему свою кинетическую энергию. Температура на поверхности анода в области активного пятна при сварке плавящимся электродом достигает 2500 … 4000°С. Температура столба дуги при сварке плавящимся электродом составляет от 7 000 до 18 000°С (для сравнения: температура плавления стали равна примерно 1500°С).

    Влияние на дугу магнитных полей

    При выполнении сварки на постоянном токе часто наблюдается такое явление как магнитное. Оно характеризуется следующими признаками:

    Столб сварочной дуги резко откланяется от нормального положения; - дуга горит неустойчиво, часто обрывается; - изменяется звук горения дуги - появляются хлопки.

    Магнитное дутье нарушает формирование шва и может способствовать появлению в шве таких дефектов как непровары и несплавления. Причиной возникновения магнитного дутья является взаимодействие магнитного поля сварочной дуги с другими расположенными близко магнитными полями или ферромагнитными массами.

    Столб сварочной дуги можно рассматривать как часть сварочной цепи в виде гибкого проводника, вокруг которого существует магнитное поле.

    В результате взаимодействия магнитного поля дуги и магнитного поля, возникающего в свариваемой детали при прохождении тока, сварочная дуга отклоняется в сторону противоположную месту подключению токопровода.

    Влияние ферромагнитных масс на отклонение дуги обусловлено тем, что вследствие большой разницы в сопротивлении прохождению магнитных силовых линий поля дуги через воздух и через ферромагнитные материалы (железо и его сплавы) магнитное поле оказывается более сгущенным со стороны противоположной расположению массы, поэтому столб дуги смещается в сторону ферромагнитного тела.

    Магнитное поле сварочной дуги увеличивается с увеличением сварочного тока. Поэтому действие магнитного дутья чаще проявляется при сварке на повышенных режимах.

    Уменьшить влияние магнитного дутья на сварочный процесс можно:

    Выполнением сварки короткой дугой; - наклоном электрода таким образом, чтобы его торец был направлен в сторону действия магнитного дутья; - подведением токоподвода ближе к дуге.

    Уменьшить эффект магнитного дутья можно также заменой постоянного сварочного тока на переменный, при котором магнитное дутье проявляется значительно меньше. Однако необходимо помнить, что дуга переменного тока менее стабильна, так как из-за смены полярности она погасает и зажигается вновь 100 раз в секунду. Для того, чтобы дуга переменного тока горела стабильно необходимо использовать стабилизаторы дуги (легкоионизируемые элементы), которые вводят, например, в покрытие электродов или во флюс.

    У электродов в прианодной и в прикатодной областях имеет место резкое падение напряжения: катодное Ukи анодноеUa. Величина этого падения напряжения зависит от материалов электродов и от газа (15В – 30В). В остальной части дуги, называемой стволом, падение напряжения прямопропорционально длине дугиlд. Градиент приблизительно постоянен вдоль ствола и достигает от 100 до 200 В/см. Итоговое напряжение на дуге

    Uд=Uк+Uа+lд∙Ед

    \ Для учителя физики

    При использовании материалов этого сайта - и размещение баннера -ОБЯЗАТЕЛЬНО!!!

    Разработка урока с презентацией по физике на тему: "Электрический ток в газах"

    Разработку урока по физике подготовила : Семенченко Галина Васильевна, г. Барнаул КГОУНПО ПУ -13, преподаватель физики,астрономии и электротехники, email: [email protected]

    Эпиграф:

    «Позавчера мы ничего не знали об электричестве, вчера мы ничего не знали об огромных резервах энергии, содержащихся в атомном ядре, о чем мы не знаем сегодня?»

    /Луи де Бройль/

    Электрический ток в газе представляет собой направленное движение положительных ионов к катоду, а отрицательных ионов и электронов к аноду.

    При столкновении положительного и отрицательного ионов отрицательный ион может отдать свой избыточный электрон положительному иону и оба иона превратятся в нейтральные атомы.

    Процесс взаимной нейтрализации ионов называется рекомбинацией ионов.

    При рекомбинации положительного иона и электрона или двух ионов освобождается определенная энергия, равная энергии, затраченной на ионизацию.

    Частично она излучается в виде света, и поэтому рекомбинация ионов сопровождается свечением (свечение рекомбинации).

    Процесс прохождения электрического тока в газах называется газовым разрядом.

    Разряды бывают двух видов:

    Самостоятельный – разряд, возникающий без чьей – либо помощи в газах.

    Несамостоятельный – разряд, возникающий в газах с помощью ионизатора.

    Ионизаторы – это факторы, вызывающие ионизацию газа.

    К факторам относятся:

    • нагревание газа до высокой температуры;
    • рентгеновских лучей;
    • лучей, возникающих при радиоактивном распаде;
    • космических лучей;
    • бомбардировки молекул газа быстро движущимися электронами или ионами.

    Несамостоятельный разряд

    Электропроводность газа создается внешними ионизаторами;

    С прекращением действия внешних ионизаторов несамостоятельный разряд прекращается;

    Несамостоятельный газовый разряд не сопровождается свечением газа.

    Самостоятельный разряд

    Для его осуществления необходимо, чтобы в результате самого разряда в газе непрерывно образовывались свободные заряды. Основным источником свободных зарядов является ударная ионизация молекул газа.

    Положительные ионы, образовавшиеся при столкновении электронов с нейтральными атомами, при своем движении к катоду приобретают под действием поля большую кинетическую энергию. При ударах таких быстрых ионов о катод с поверхности катода выбиваются электроны.

    Кроме того, катод может испускать электроны при нагревании до большой температуры. Этот процесс называется термоэлектронной эмиссией. Его можно рассматривать как испарение электронов из металла. Во многих твердых веществах термоэлектронная эмиссия происходит при температурах, при которых испарение самого вещества еще мало. Такие вещества и используются для изготовления катодов.

    Виды самостоятельных разрядов.

    В зависимости от свойств и состояния газа, характера и расположения электродов, а также от приложенного к электродам напряжения возникают различные виды самостоятельного разряда.

    Тлеющий разряд.

    Тлеющий разряд наблюдается в газах при низких давлениях порядка нескольких десятков миллиметров ртутного столба и меньше.

    Основными частями тлеющего разряда являются катодное темное пространство, резко отдаленное от него отрицательное, или тлеющее свечение, которое постепенно переходит в область фарадеева темного пространства. Эти три области образуют катодную часть разряда, за которой следует основная светящаяся часть разряда, определяющая его оптические свойства и называемая положительным столбом.

    При достаточно низких давлениях электроны, выбиваемые из катода положительными ионами, проходят через газ почти без столкновений с его молекулами, образуя электронные, или катодные лучи.

    Вид тлеющего разряда

    Тлеющий разряд полученный с помощью генератора

    Применение тлеющего разряда

    Тлеющий разряд используется в газосветных трубках, лампах дневного света, стабилизаторах напряжения, для получения электронных и ионных пучков.

    Если в катоде сделать щель, то сквозь нее в пространство за катодом проходят узкие ионные пучки, часто называемые каналовыми лучами.

    Широко используется явление катодного распыления, т.е. разрушение поверхности катода под действием ударяющихся о него положительных ионов. Ультрамикроскопические осколки материала катода летят во все стороны по прямым линиям и покрывают тонким слоем поверхность тел (особенно диэлектриков), помещенных в трубку.

    Таким способом изготовляют зеркала для ряда приборов, наносят тонкий слой металла на селеновые фотоэлементы.

    Тлеющий разряд на производстве

    Обработка коронным разрядом поверхностей

    Коронный разряд

    Коронный разряд возникает при нормальном давлении в газе, находящемся в сильно неоднородном электрическом поле (например, около остриев или проводов линий высокого напряжения).

    При коронном разряде ионизация газа и его свечение происходят лишь вблизи коронирующих электродов. В случае коронирования катода (отрицательная корона) электроны, вызывающие ударную ионизацию молекул газа, выбиваются из катода при бомбардировке его положительными ионами.

    Если коронируют анод (положительная корона), то рождение электронов происходит вследствие фотоионизации газа вблизи анода.

    Корона - вредное явление, сопровождающееся утечкой тока и потерей электрической энергии. Для уменьшения коронирования увеличивают радиус кривизны проводников, а их поверхность делают более гладкой.

    Вид коронного разряда

    слайд№ 13

    Частный случай коронного разряда – кистевой

    При повышенном напряжении коронный разряд на острие приобретает вид исходящих из острия и перемежающихся во времени светлых линий. Эти линии, имеющие ряд изломов и изгибов, образуют подобие кисти, вследствие чего такой разряд называют кистевым.

    С коронным разрядом приходится считаться, имея дело с высоким напряжением. При наличии выступающих частей или очень тонких проводов может начаться коронный разряд. Это приводит к утечке электроэнергии. Чем выше напряжение высоковольтной линии, тем толще должны быть провода.

    Огни святого Эльма

    Заряженное грозовое облако индуцирует на поверхности Земли под собой электрические заряды противоположного знака. Особенно большой заряд скапливается на остриях. Поэтому перед грозой или во время грозы нередко на остриях и острых углах высоко поднятых предметов вспыхивают похожие на кисточки конусы света. С давних времен это свечение называют огнями святого Эльма.

    Особенно часто свидетелями этого явления становятся альпинисты. Иногда даже не только металлические предметы, но и кончики волос на голове украшаются маленькими светящимися кисточками.

    Огни святого Эльма перед грозой в океане

    Слайд№ 17

    Искровой разряд

    Искровой разряд имеет вид ярких зигзагообразных разветвляющихся нитей-каналов, которые пронизывают разрядный промежуток и исчезают, сменяясь новыми.

    Каналы искрового разряда начинают расти иногда от положительного электрода, иногда от отрицательного, а иногда и от какой-нибудь точки между электродами.

    Искровой разряд сопровождается выделением большого количества теплоты, ярким свечением газа, треском или громом.

    Все эти явления вызываются электронными и ионными лавинами, которые возникают в искровых каналах и приводят к огромному увеличению давления, достигающему 107 108 Па, и повышению температуры до 10000 С.

    Применение искрового разряда

    При малой длине разрядного промежутка искровой разряд вызывает специфическое разрушение анода, называемое эрозией. Это явление было использовано в электроискровом методе резки, сверления и других видах точной обработки металла.

    Искровой промежуток применяется в качестве предохранителя от перенапряжения в электрических линиях передач (например, в телефонных линиях).

    Электрическая искра применяется для измерения больших разностей потенциалов с помощью шарового разрядника, электродами которого служат два металлических шара с полированной поверхностью.

    Электроискровой станок

    Слайд № 21

    Характерным примером искрового разряда является молния.

    Главный канал молнии имеет диаметр от 10 до 25 см., а длина молнии может достигать нескольких километров. Максимальная сила тока импульса молнии достигает десятков и сотен тысяч ампер.

    Молнии бывают линейные и шаровые.

    Шаровая молния - это одиночная ярко светящаяся относительно стабильная небольшая масса, которая наблюдается в атмосфере, плавающая в воздухе и перемещающаяся вместе с потоками воздуха, содержащая в своем теле большую энергию, исчезающая тихо или с большим шумом типа взрыва и не оставляющая после своего исчезновения никаких материальных следов, кроме тех разрушений, которые она успела натворить.

    Шаровая молния

    Слайд № 23

    Как вести себя во время грозы?

    1. Нельзя укрываться в грозу возле одиноко стоящих деревьев, столбов и других высоких местных предметов, надо отойти на 15 метров.
    2. Опасно находиться в воде или поблизости от неё.
    3. Палатку ставить у воды нельзя, так как молнии часто ударяют в речные берега.
    4. Никогда не следует недооценивать опасность молнии.
    5. Если гроза застала вас в автомобиле, не выходите из него. Закройте все двери и окна и переждите ненастье внутри.
    6. Находясь во время грозы в загородном доме, отключите из сети электроприборы, а телевизор – от индивидуальной антенны.
    7. Молния редко ударяет в кустарник, практически не попадает в клён и берёзу, чаще всего попадает в дуб и тополь.

    Дуговой разряд

    Дуговой разряд был открыт В. В. Петровым в 1802 году. Этот разряд представляет собой одну из форм газового разряда, осуществляющуюся при большой плотности тока и сравнительно небольшом напряжении между электродами (порядка нескольких десятков вольт).

    Основной причиной дугового разряда является интенсивное испускание термоэлектронов раскаленным катодом. Эти электроны ускоряются электрическим полем и производят ударную ионизацию молекул газа, благодаря чему электрическое сопротивление газового промежутка между электродами сравнительно мало.

    В ряде случаев дуговой разряд наблюдается и при сравнительно низкой температуре катода (ртутная дуговая лампа).

    Дуговой разряд нашел применение в ртутном выпрямителе, преобразующем переменный электрический ток в ток постоянного направления.

    Применение дугового разряда

    В 1876 году П. Н. Яблочков впервые использовал электрическую дугу как источник света.

    Дуговой разряд применяется как источник света в прожекторах и проекционных аппаратах.

    Высокая температура дугового разряда позволяет использовать его для устройства дуговой печи. Дуговые печи, питаемые током очень большой силы, применяются в ряде областей промышленности: для выплавки стали, чугуна, ферросплавов, бронзы, получения карбида кальция, окиси азота и т.д.

    В 1882 году Н. Н. Бенардос дуговой разряд впервые использовал для резки и сварки металла.

    В 1888 году Н. Г. Славянов усовершенствовал этот метод сварки, заменив угольный электрод металлическим.

    Знаменитые физики, изучавшие дуговой разряд.

    Применение плазмы

    Низкотемпературная плазма применяется в газоразрядных источниках света - в светящихся трубках рекламных надписей, в лампах дневного света. Газоразрядную лампу используют во многих приборах, например, в газовых лазерах - квантовых источниках света.

    Высокотемпературная плазма применяется в магнитогидродинамических генераторах.

    Недавно был создан новый прибор - плазмотрон. В плазмотроне создаются мощные струи плотной низкотемпературной плазмы, широко применяемые в различных областях техники: для резки и сварки металлов, бурения скважин в твердых породах и т.д.



    Похожие статьи