Какой прозрачный пластик устойчив в ультрафиолету. Влияние ультрафиолетового излучения и других факторов на полимерные изделия

Большинство масел и герметиков используется с одинаковым успехом как для внутренней отделки, так и для внешней. Правда, для этого они должны обладать определенным набором свойств, например, таких, как влагонепроницаемость, теплоизоляция и устойчивость к ультрафиолетовым излучениям.

Все эти критерии должны быть соблюдены в обязательном порядке, ведь климатические условия у нас непредсказуемы и постоянно меняются. Утром может быть солнечно, а к обеду уже появятся тучи и начнется проливной дождь.

Имея все вышесказанное в виду, специалисты советуют выбирать устойчивые к УФ-лучам масла и герметики.

Зачем необходим фильтр

Казалось бы, зачем добавлять УФ-фильтр, когда можно применить силиконовый или полиуретановый герметик для наружных работ? Но все эти средства имеют определенные различия, что не позволяет их использовать абсолютно во всех случаях. Например, можно с легкостью провести реставрацию шва, если использовался акриловый герметик, чего не скажешь о силиконовом.

К тому же силиконовое герметизирующее средство обладает высокой агрессивностью к металлическим поверхностям, чего не скажешь об акриловых. Еще одной отличительной чертой со знаком минус у силиконовых герметиков выступает их неэкологичность. В них содержатся растворители, опасные для здоровья. Именно поэтому в некоторых акриловых герметиках начали использовать УФ-фильтр, чтобы расширить диапазон их применения.

Ультрафиолетовое излучение является основной причиной разрушения большинства полимерных материалов. Учитывая тот факт, что не все герметики устойчивы к ультрафиолету, нужно предельно внимательно подходить к выбору герметизирующего средства или масла.

Вещества, устойчивые к ультрафиолетовому излучению

На рынке герметизирующих средств и покрытий уже существует некоторое количество герметиков, устойчивых к ультрафиолетовому излучению. К ним можно отнести силиконовые и полиуретановые.

Силиконовые герметики

К преимуществам силиконовых герметиков можно отнести высокую адгезию, эластичность (до 400 %), возможность окрашивания поверхности после затвердевания и устойчивость к ультрафиолету. Однако у них хватает и недостатков: неэкологичность, агрессивность к металлическим конструкциям и невозможность реставрации шва.

Полиуретановые

Обладают еще большей эластичностью, чем силиконовые (до 1000 %). Морозостойки: их можно наносить на поверхность при температуре воздуха до −10 C°. Полиуретановые герметики долговечны и, конечно же, устойчивы к ультрафиолетовым излучениям.

К недостаткам можно отнести высокую адгезию не ко всем материалам (плохо взаимодействует с пластиком). Использованный материал очень сложно и дорого утилизировать. Полиуретановый герметик плохо взаимодействует с влажной средой.

Акриловые герметики с УФ-фильтром

Акриловые герметики имеют много преимуществ, среди которых высокая адгезия ко всем материалам, возможность реставрации шва и эластичность (до 200 %). Но среди всех этих преимуществ не хватает одного пункта: устойчивости к ультрафиолетовым лучам.

Благодаря этому УФ-фильтру теперь акриловые герметики могут составить достойную конкуренцию другим видам герметизирующих средств и облегчить выбор потребителя в определенных случаях.

Масла с УФ-фильтром

Бесцветное средство для покрытия деревянных поверхностей обладает высокой и надежной защитой от ультрафиолетового излучения. Масла с УФ-фильтром с успехом применяются для наружных работ, позволяя материалу сохранять все свои основные положительные свойства, несмотря на внешние воздействия.

Данный вид масел позволяет немного отсрочить очередное плановое покрытие поверхности маслом. Интервал между реставрациями уменьшается в 1,5–2 раза.

Полимеры – это активные химические вещества, которые в последнее время приобретают широкую популярность из-за массового потребления пластмассовых изделий. С каждым годом растут объемы мирового производства полимеров, а изготовленные с их использованием материалы завоевывают новые позиции в бытовой и производственной сферах.

Все испытания продукции проводятся в лабораторных условиях. Их основная задача – определить факторы окружающей среды, которые оказывают разрушительное воздействие на пластмассовые изделия.

Основная группа неблагоприятных факторов, разрушающих полимеры

Стойкость конкретных изделий к негативным климатическим условиям определяется с учетом двух главных критериев:

  • химического состава полимера;
  • типа и силы воздействия внешних факторов.

При этом неблагоприятное влияние на полимерные изделия определяется по времени их полного разрушения и типу воздействия: моментальная полная деструкция или малозаметные трещины и дефекты.

К факторам, влияющим на разрушение полимеров, относятся:

  • микроорганизмы;
  • тепловая энергия различной степени интенсивности;
  • промышленные выбросы, в составе которых присутствуют вредные вещества;
  • повышенная влажность;
  • УФ-излучение;
  • рентгеновское излучение;
  • повышенный процент содержания в воздухе соединений кислорода и озона.

Процесс полного разрушения изделий ускоряется при одновременном воздействии нескольких неблагоприятных факторов.

Одной из особенностей проведения климатических испытаний полимеров является необходимость тестовой экспертизы и изучения влияния каждого из перечисленных явлений по отдельности. Однако такие оценочные результаты не могут с полной достоверностью отразить картину взаимодействия внешних факторов с полимерными изделиями. Это связано с тем, что в обычных условиях материалы чаще всего подвергаются комбинированному воздействию. При этом разрушительный эффект заметно усиливается.

Воздействие ультрафиолетовой радиации на полимеры

Существует ошибочное мнение, что пластмассовым изделиям особый вред наносят солнечные лучи. На самом деле, разрушительное влияние оказывает только ультрафиолет.

Связи между атомами в полимерах могут быть уничтожены только под воздействием лучей этого спектра. Последствия такого неблагоприятного воздействия можно наблюдать визуально. Они могут выражаться :

  • в ухудшении механических свойств и прочности пластмассового изделия;
  • повышении хрупкости;
  • выгорании.

В лабораториях для подобных испытаний применяют ксеноновые лампы.

Также проводят эксперименты по воссозданию условий воздействия УФ-радиации, повышенной влажности и температуры.

Такие испытания нужны для того, чтобы сделать выводы о необходимости внесения изменений в химический состав веществ. Так, для того чтобы полимерный материал приобрел устойчивость к УФ-излучению, в него добавляют специальные адсорберы. За счет поглощающей способности вещества активизируется защитный слой.

Устойчивость и прочность межатомных связей также можно повысить путем введения стабилизаторов.

Разрушающее действие микроорганизмов

Полимеры относятся к веществам, которые весьма устойчивы к воздействию бактерий. Однако это свойство характерно только для изделий, изготовленных из пластмассы высокого качества.

В низкокачественные материалы добавляются низкомолекулярные вещества, которые имеют тенденцию скапливаться на поверхности. Большое число таких компонентов способствует распространению микроорганизмов.

Последствия разрушительного воздействия можно заметить довольно быстро, так как:

  • утрачиваются асептические качества;
  • снижается степень прозрачности изделия;
  • появляется хрупкость.

В числе дополнительных факторов, которые могут повлечь за собой снижение эксплуатационных характеристик полимеров, следует отметить повышенную температуру и влажность. Они создают условия, благоприятные для активного развития микроорганизмов.

Проводимые исследования позволили найти наиболее эффективный способ предотвращения размножения бактерий. Это добавление в состав полимеров специальных веществ – фунгицидов. Развитие бактерий приостанавливается за счет высокой токсичности компонента для простейших микроорганизмов.

Можно ли нейтрализовать воздействие негативных природных факторов?

В результате проводимых исследований удалось установить, что большая часть пластмассовой продукции, представленной на современном рынке, не вступает во взаимодействие с кислородом и его активными соединениями.

Однако механизм разрушения полимеров может быть запущен при комплексном воздействии кислорода и высокой температуры, влажности или ультрафиолетовой радиации.

Также при проведении специальных исследований удалось изучить особенности взаимодействия полимерных материалов с водой. Жидкость влияет на полимеры тремя способами:

  1. физическим;
  2. химическим (гидролиз);
  3. фотохимическим.

Дополнительное одновременное воздействие повышенной температуры может ускорить процесс разрушения полимерных изделий.

Коррозия пластмасс

В широком смысле это понятие подразумевает разрушение материала под негативным воздействием внешних факторов. Так, под термином «коррозия полимеров» следует понимать изменение состава или свойств вещества, вызванное неблагоприятным влиянием, которое приводит к частичному или полному разрушению изделия.

Процессы целенаправленного преобразования полимеров для получения новых свойств материалов к этому определению не относятся.

О коррозии следует говорить, например, когда поливинилхлорид соприкасается и взаимодействует с химически агрессивной средой – хлором.

Основные характеристики:

  • Эстетические/визуальные характеристики;
  • Цвет;
  • Блеск;
  • Поверхность гладкая, текстурированная, зернистая…;
  • Рабочие характеристики;
  • Формуемость и общие механические свойства;
  • Коррозийная стойкость;
  • Устойчивость к УФ-излучению.

Все эти характеристики проверяются либо в процессе изготовления, либо после него, и могут быть проверены различными тестами и измерениями.

Характеристики продуктов основаны на этих тестах.

1. Механические свойства краски

Необходимые характеристики:

Формовочные методы:

  • Гибка;
  • Профилирование;
  • Глубокая вытяжка.

Контакт инструмент с органическим покрытием:

  • Износостойкость;
  • Смазочные свойства краски.

Температура обработки минимум 16°С

2. Механические свойства: Гибкость

Т-образный изгиб

Плоский образец окрашенного материала сгибается параллельно направлению прокатки. Действие повторяется для получения все менее жёсткого радиуса изгиба.

Определяется адгезия и гибкость системы покрытия в режиме деформации при изгибе (или режиме растяжения) при комнатной температуре (23°С ±2°С).

Результаты выражаются, например (0.5 WPO и 1,5T WC).

Ударное испытание

Плоский образец окрашенного материала деформируется путем удара 20 мм-го полусферического пробойника весом 2 кг. Высота падения определяет энергию удара. Проверяются адгезия покрытия и гибкость.

Оценивается способность окрашенного материала противостоять быстрой деформации и ударам (сопротивление отслоению покрытия и растрескиванию).

3. Механические свойства: Твердость

Твердость по карандашу

Карандаши различной твердости (6В – 6Н) перемещаются по поверхности покрытия при постоянной нагрузке.

Оценивается твердость поверхности по «карандашу».

Твердость по Клемену (Тест на царапание)

Индентор диаметром 1мм перемещается по поверхности с постоянной скоростью. Сверху могут накладываться различные нагрузки (от 200 г до 6 кг).

Определяются различные свойства: твердость поверхности покрытия при царапании, фрикционные свойства, адгезия с подложкой.

Результаты зависят от толщины окрашенного прдукта.

Твердость по Тейберу (тест на износостойкост)

Плоский образец окрашенного материала поворачивается под двумя абразивными кругами, установленными параллельно. Истирание достигается круговым движением испытательной панели и постоянной нагрузкой.

Твердость по Тейберу – это стойкость к истиранию при грубом контакте.

Измерение напряжения на металлочерепице показывает, что деформации в некоторых зонах могут быть очень сильными.

Растяжение на продольном направлеии может достигать 40%.

Усадка на поперечном направлении может достигать 35%.

5. Механические свойства: пример дефформации при производстве металлочерепицы.

Тест Марсиньяка:

1-й шаг: деформация в устройстве Марсиньяка;

2-й шаг состаривание в климатической камере (тропический тест).

Для воспроизведения в малых масштабах наиболее сильных деформаций, наблюдаемых на промышленной кровельной черепице.

Для моделирования старения краски после профилирования и оценки эффективности систем окраски.

6. Коррозионная стойкость.

Коррозионная стойкость окрашенных продуктов зависит от:

Окружающей среды (температура, влажность, осадки, агрессивные вещества, например хлориды…);

Природы и толщины органического покрытия;

Природы и толщины металлической основы;

Обработки поверхности.

Коррозионную стойкость можно измерять:

Ускоренными испытаниями:

Различные ускоренные испытания могут проводиться в различных «простых» (искусственно созданных) агрессивных условиях.

Природным воздействием:

Возможны воздействия различных сред: морской климат, тропический, континентальный, промышленные условия…

7. Коррозионная стойкость: ускоренные испытания

Солевой тест

Окрашенный образец подвергается воздействию сплошного солевого тумана (непрерывное распыление раствора хлорида натрия на 50г/л при 35°С);

Продолжительность теста меняется от 150 до 1000 часов в зависимости от спецификации продукта;

Способность ингибиторов (замедлителей) коррозии блокировать анодные и катодные реакции по краям и рискам;

Влажная адгезия грунта;

Качество обработки поверхности через ее чувствительность к увеличению уровня рН.

8. Коррозионная стойкость: ускоренные испытания

Устойчивость к конденсатам, QST тест

Плоский окрашенный образец выставляется в условиях конденсата (с одной стороны панель подвергается воздействию влажной атмосферы при 40°С, другая сторона держится в комнатных условиях).

Влагостойкость, KTW тест

Плоский окрашенный образец подвергается циклическим воздействиям (40°С > 25°С) в насыщенной водной атмосфере;

После тестирования определяется появление пузырей на металле тестируемого образца;

Влажная адгезия грунта и слоя обработки поверхности;

Барьерный эффект покрытия внешнего слоя и его пористость.

Тест на коррозию внутренних витков рулона

Плоский окрашенный образец помещается под нагрузкой 2 кг в пачке с другими образцами и подвергается циклическому воздействию (25°С, 50%RH> 50°C или 70°С, 95%RH);

Экстремальные условия, приводящие к коррозии между витками рулона во время транспортировки или хранения (влажная адгезия грунта, барьерный эффект покрытия верхнего слоя и пористость в закрытых условиях пачки).


90° на Север

5° на Юг

10. Коррозионная стойкость: Открытое воздействие (Стандарты долговечности: EN 10169)

В соответствии с EN 10169 продукты для открытых сооружений должны подвергаться воздействию окружающей среды в течении минимум 2 лет.

Характеристики, необходимые для RC5: 2 мм и 2S2, в основном под навесом (образец 90°С) и в зонах перекрытия внахлест (образец 5°).

11. Устойчивость к УФ воздействию (выгоранию)

После коррозии УФ воздействие является второй главной угрозой долговечности окрашенных материалов.

Термин «УФ выгорание» означает изменение внешнего вида краски (в основном цвета и блеска) со временем.

Не только воздействие УФ излучения ухудшает качество краски, но и другие воздействия окружающей среды:

Солнечный свет – УФ, видимый и инфро-красый диапазоны;

Влажность – время намокания поверхности, относительная влажность;

Температура – стойкость к растрескиванию – максимальные значеия и ежедневные циклы нагрева/охлаждеия;

Ветер, дождь – истирание песком;

Соль – промышленные, прибрежные зоны;

Грязь – воздействие грунта и загрязняющие вещества…

12. УФ выгорание

Ускоренный тест устойчивость к УФ

Как проводится тест?

Стандарты: EN 10169;

Плоский образец ОС подвергается воздеййствию УФ излучению;

УФ облучение;

Возможные периоды кондесации;

2000 часов воздействия (Циклы 4Н конденсации 40°С/4Н облучение при 60°С с излучением 0,89В/м2 при 340 нм);

После тестирования определяются изменения цвета и блеска.

13. Устойчивость к УФ

- EN 10169: Ускоренные испытания

- EN 10169: Воздействие окружающей среды:

Только боковое воздействие на образец в течении 2 лет в местах с фиксированной энергией солнечного излучения (не менее 4500 МДж/м2/год) > Гваделупа, Флорида, Санари и т.д…


Что это такое?

Чем так хороша уф-печать?

Зачем платить больше?

Принцип ультрафиолетовой печати

Ультрафиолетовая печать (уф-печать) — это один из видов печати с использованием УФ-отверждаемых чернил методом струйной печати непосредственно на материал. При воздействии УФ-излучения определенной волны такие чернила моментально полимеризуются и переходят в твердое состояние. Так как, чернила не впитываются в материал и не растекаются по поверхности, это позволяет создавать яркие и насыщенные изображения.

УФ-чернила после полимеризации имеют матовую поверхность, поэтому для придания глянцевости необходима дополнительная обработка лаком. Но если использовать печать на стекле с обратной стороны, то изображения получаются сочными и глянцевыми. Таким образом, изображение может наноситься на любую поверхность. Глянцевые поверхности перед нанесением обрабатывают специальным раствором, который помогает чернилам удерживаться на поверхности материала. Даже без лака после полимеризации чернила перестают испарять вредные растворители и становятся безвредными для человека.

При печати на прозрачных материалах (стекло, оргстекло) с белым цветом получаем несколько слоев: основа (стекло) + праймер (для сцепления с поверхностью) + цветные уф-краски + белая уф-краска + белая защитная пленка безопасности.

В чем же заключаются преимущества печати ультрафиолетовыми чернилами?

  • Стойкость
    УФ-чернила очень устойчивы к воздействиям окружающей среды. Кроме того, они являются более прочными — не выгорают на солнце и не растворяются в воде и растворителе.
  • Экологичность
    ​Компоненты, входящие в состав UV чернил, в отличии от сольвентных красок, не содержат растворителей на основе смол. В процессе работы с чернилами практически исключается вредное влияние на атмосферу и человека. Это позволяет использовать ультрафиолетовую печать в местах с повышенными санитарными требованиями (школы, детские сады, больницы) и в интерьере.
  • Большой выбор материала и поверхностей
    ​​УФ-чернила не впитываются в материал, а остаются на поверхности. Именно поэтому можно печатать на любых материалах: гибких или твердых, с гладкими или неровными поверхностями.
  • Яркие и сочные краски
    ​​Т.к. уф-чернила не впитываются и не растекаются, то краски не тяряют сочности, а отсутствие растекания позволяет печатать четкие изображения как в исходном файле. Именно поэтому можно печатать на любых поверхностях без потери сочности и четкости.
  • Долговечность
    Во внутренней рекламе срок службы УФ печати составляет 10 - 15 лет, а в наружной ограничивается 4-5 годами. Это объясняется тем, что на улице рекламные материалы все же подвержены воздействиям ультрафиолетового облучения и значительным перепадам температуры.
  • Печать белым цветом
    ​В настоящее время очень мало принтеров может похвастаться возможностью печати белым цветом. При этом белый цвет может быть подложкой, укрывистым, и просто как 5-й дополнительный цвет при печати на темных поверхностях

Так зачем платить за уф-печать?

Сама технология уф-печати значительно дороже простой интерьерной печати сольвентными плоттерами. Но при использовании печати на сольвентном плоттере есть ряд значительных недостатков, в том числе и вредных для здоровья, так как даже спустя несколько дней сольвентные чернила продолжают испаряться с поверхности пленки. А уж список заболеваний, которые она вызывает в приличном месте лучше не произносить.

Для примера давайте рассмотрим самый распространенный случай - изготовление скинали (кухонного фартука)

Итак, скинали устанавливается на кухне между нижними и верхними ящиками, в непосредственной близости от приготовления пищи . Естественно в таком случае использовать более экологичную продукцию . Закаленное стекло за газовой плитой находится в зоне с перепадами температуры , и пленка в таких местах может "поплыть", с появлением пузырей и ссыханием пленки к центру стекла, что в свою очередь приводит к появлению прозрачных полос по краям скинали. Это особенно критично выглядит на стыках отдельных стекол . Всего этого уф-печать лишена, т.к. она наносится прямо на стекло и не боится высоких температур. Дополнительным бонусом будет высокое качество картинки и печать в край стекла, запечатываются даже скосы.

Разница в стоимости одного кв.м фотопечати на пленке и уф-печати составляет 600-800 руб. При длине фартука в 4 п.м. дополнительные затраты составят 1.5 - 2 тыс. руб. Но за эти деньги Вы получите яркие краски, без пыли и мусора под пленкой, без прозрачных краев, с гарантией на 10-15 лет. Вы достойны хорошего товара за потраченные деньги!

Устойчивость эмалей к выцветанию

Условную светостойкость определяли на образцах эмали темно-серого цвета RAL 7016 на ПВХ–профиле REHAU BLITZ.

Условную светостойкость лакокрасочного покрытия определяли в испытаниях в соответствии со стандартами:

ГОСТ 30973-2002 "Профили поливинилхлоридные для оконных и дверных блоков. Метод определения сопротивления климатическим воздействиям и оценки долговечности" . п. 7.2, таб.1, прим. 3.

Определение условной светостойкости при интенсивности излучения 80±5 Вт/м 2 контролировали по изменению блеска покрытий и цветовых характеристик. Цветовые характеристики покрытий определяли на приборе «Спектротон» после протирки образцов сухой ветошью для удаления образовавшегося налета.

Об изменении цвета образцов в процессе испытания судили по изменению цветовых координат в системе CIE Lab, рассчитывая ΔE. Результаты приведены в таблице 1.

Таблица 1 – Изменение блеска и цветовых характеристик покрытий

Время выдержки, ч

Потеря блеска, %

Координата цвета - L

Координата цвета - a

Координата цвета -b

Изменение цвета Δ E к эталону

До испытаний

После испытаний

Считаются прошедшими испытания образцы с 1 по 4.

Данные приводятся для образца №4 - 144 часа УФ облучения, что соответствует по ГОСТ 30973-2002 (40 условных лет):

L = 4,25 норма 5,5; a = 0,48 норма 0,80; b = 1,54 норма 3,5.

Заключение:

Мощность светового потока до 80±5 Вт/м 2 приводит к резкому падению блеска покрытий на 98 % через 36 ч испытаний в результате образования налета. При продолжении испытаний дальнейшая потеря блеска не происходит. Светостойкость можно охарактеризовать в соответствии с ГОСТ 30973-2002 - 40 условных лет.

Цветовые характеристики покрытия лежат в допустимых пределах и соответствуют ГОСТ 30973-2002 на образцах №1, №2, №3, №4.



Похожие статьи