Двухтактный трансформатор. Двухтактный преобразователь напряжения

Временные диаграммы

При выборе схемы построения импульсного источника электро­питания разработчик в первую очередь руководствуется ожидаемыми габаритными размерами и простотой схемотехнических решений. Се­тевые источники, питающие нагрузки небольшой мощности (до 100-150 Вт), встраиваемые в достаточно габаритную аппаратуру, лучше строить по однотактной fly-back схеме. Для стабилизаторов, в которых не требуется гальванической развязки нагрузки от питающей сети, применяют чопперную схему. При питании от гальванических элементов или аккумуляторов можно использовать бустерную схему. Однако не исключены ситуации, в которых перечисленные преобра­зователи и стабилизаторы использовать нельзя.

Случай первый - прибор, питаемый от сети переменного тока, имеет ограниченные габариты (к примеру, в приборном корпусе не удается разместить достаточно крупный накопительный трансформа­тор фли-бак конвертора).

Второй случай - - потребляемая мощность прибора превышает 150...200Вт.

Третий случай - отдельные части схемы прибора требуют до­полнительного питания, гальванически развязанного от остальной схемы.

Во всех этих случаях требуется разработка так называемых двух­тактных схем преобразователей, имеющих гальваническую развязку первичной и вторичной цепей. Наибольшее распространение среди двухтактных конверторов получили три схемы: двухфазная пуш-пульная (push-pull), полумостовая (half-bridge) и мостовая (full-bridge). Достоинство этих схем состоит в том, что при необходимости разработчик может легко ввести в конструкцию узел стабили­зации выходного напряжения, либо отказаться от него. В первом слу­чае конвертор будет представлять собой полноценный источник пита­ния, к которому можно подключать любую нагрузку. Во втором случае получится простой преобразователь электрической энергии, требующий дополнительной стабилизации по выходу. В ряде случаев такой простой конвертор вполне устроит разработчика. Поскольку все три схемы двухтактных конверторов имеют множество аналогий, мы расскажем о них в одной главе, акцентируя внимание на индиви­дуальных особенностях и проводя сравнительный анализ.

Пуш-пульная двухфазная схема


Рис. 14.1. Базовая двухтактная push-pull схема преобразователя

Эта схема (рис. 14.1) состоит из двух ключевых элементов, в качестве которых используются мощные биполярные или поле­вые транзисторы. Трансформатор Тр имеет первичную и вторичную обмотки, разделенные на полуобмотки. К средней точке первичной обмотки подключен вывод источника питания. Вторичная цепь пред­ставляет собой двухфазный двухполупериодный выпрямитель VD1, VD2, а также фильтр пульсаций (в этой схеме элементом фильтра яв­ляется конденсатор С ф).



В первом такте, как показано на рис. 14.2, l замкнут, Кл2 разо­мкнут, ток течет по полуобмотке 1.1 и трансформируется в полуоб­мотку 2.1. Диод VD1 открыт и проводит ток i 2.1 , подзаряжая конденса­тор Сф. Во втором такте, изображенном на рис. 14.3, ключ Кл.l закры­вается и открывается ключ Кл2. Соответственно ток i 1.2 течет по
полуобмотке 1.2 и трансформируется в полуобмотку 2.2. Диод VD1 заперт, диод VD2 проводит ток i 2 2 , подзаряжая конденсатор С ф.

Та­ким образом, передача энергии в нагрузку осуществляется во время обоих тактов.


Чтобы перейти к параметрам реальных схем, мы вначале предпо­ложим, что у нас, тем не менее, есть возможность применения идеаль­ных элементов. То есть транзисторы могут мгновенно переключаться, отсутствует время обратного восстановления диодов, первичная об­мотка обладает очень большим значением индуктивности намагниче­ния (согласно эквивалентной схеме). В этих условиях определить за­висимость выходного напряжения от величины входного очень про­сто. Напряжение первичной обмотки трансформируется во вторичную обмотку без потерь, с коэффициентом трансформации:

Коэффициенты трансформации n l и п 2 полагают одинаковыми, более того, уравнивают количество витков первичных и вторичных полуобмоток:

Напряжение на первичной обмотке в режиме замкнутого ключа (без учета падения напряжения на силовом ключе):


Поскольку схема строится с двухполупериодным выпрямлением на выходе, соотношение между напряжением питания и напряжением на нагрузке:

Пока нам не совсем ясно, как можно ввести регулировку напряже­ния на нагрузке. Поэтому необходимо вспомнить о коэффициенте за­полнения и распространить его на двухтактную схему. Попытаемся выяснить, что произойдет, если мы сузим управляющие импульсы, как показано на рис. 14.4. Коэффициент заполнения и в случае двух­тактной схемы определяется точно так же, как и для однотактной:

где γ - отношение времени открытого состояния одного ключа к пе­риоду коммутации.


Рис. 14.4. К определению коэффициента заполнения

В данном случае мы определяем коэффициент заполнения для од­ного плеча двухтактной схемы. . Определим среднее значение тока на­грузки, учитывая, что передача энергии осуществляется на протяже­нии обоих полупериодов, а значит, среднее значения напряжения за один такт работы нужно удвоить:

Рис. 14.5. Графики, поясняющие работу пуш-пульной схемы преобразователя

Таким образом, регулируя γ в промежутке от 0 до 0,5, можно ли­нейно регулировать напряжение на нагрузке. В реальной схеме ни вкоем случае нельзя допускать, чтобы преобразователь работал с γ = 0,5. Типичное значение γ не должно превышать 0,4...0,45. Все дело в том, что используемые элементы не могут обладать идеальными свойствами. Как нам известно, первичная обмотка обладает ограни­ченной индуктивностью L μ , которая накапливает энергию:


Максимальный ток i μ , показанный на графике (рис. 14.7), определяется из соотношения:


При размыкании Кл1 накопленная в магнитопроводе энергия стремится поддержать ток. Если бы в схеме не было защитного диода VDp 2 , показанного на рис. 14.6, на Кл2 возник бы бросок отрицатель­ного напряжения. Способность биполярных транзисторов выдержи­вать отрицательные броски напряжения невелика (единицы вольт), поэтому разрядный ток i μ необходимо замкнуть через диод VDp 2 . Ди­од практически «накоротко» замыкает обмотку ω 2 2 и быстро разряжа­ет L μ (рис. 14.8). При разряде выделяется тепловая энергия, учесть ко­торую можно через следующее соотношение:


Рис. 14.6. К пояснению коммутационных

процессов в реальной схеме пуш-пульного


преобразователя Рис. 14.7. Определение тока намагничения

Рис. 14.8. Разряд индуктивности намагничения

При работе пуш-пульного преобразователя разрядные диоды включаются попеременно. Следует также помнить, что в составе транзисторов MOSFET, а также некоторых транзисторов IGBT эти ди­оды уже есть, поэтому вводить дополнительные элементы нет необхо­димости.

Вторая неприятность связана с конечным временем восстановле­ния диодов выпрямителя. Представим, что в начальный момент вре­мени диод VD1 проводит ток. Направления действия ЭДС показаны на схеме «а» (рис. 14.9).


Рис. 14.9. Пояснение влияния конечного времени восстановления выпрямительных диодов


При включении транзистора VT1 ЭДС меняет направление (схема «б»), открывается диод VD2. Но в то же время диод VD1 не может мгновенно закрыться. Поэтому вторичная обмотка оказывается закороченной диодной парой VD1-VD2, что вызывает броски тока в клю­чевом элементе (это хорошо видно на эквивалентной схеме трансфор­матора). Форма тока первичной обмотки на совмещенном графике при у = 0,5 будет такой, как изображено на рис. 14.10.

Рис. 14.10. Характер тока обмоток трансформатора в случае наличия идеальных и реальных выпрямительных диодов

Во избежание коммутационных выбросов необходимо, во-пер­вых, вводить паузу между закрытием Кл1 и открытием Кл2 на время не менее чем удвоенное время обратного восстановления диода tгг. Во-вторых, если есть возможность, лучше отказаться от обычных ди­одов и применить диоды Шоттки.

Напряжение на закрытом ключевом транзисторе складывается из напряжения питания U n и ЭДС первичной полуобмотки, которая в данный момент разомкнута. Поскольку коэффициент трансформации этих обмоток равен 1 (обмотки с одинаковым числом витков), пере­напряжение на ключевом транзисторе достигает 2 U n . Поэтому, выби­рая транзистор, следует обратить внимание на допустимое напряжение между его силовыми электродами. Необходимо также учитывать, что ток ключевого транзистора складывается из постоянного тока на­грузки, пересчитанного в первичную цепь, и линейно нарастающего тока намагничения индуктивности первичной обмотки. Ток имеет трапецеидальную форму.

При определении максимального коэффициента заполнения в случае использования полевых транзисторов, которые переключают­ся достаточно быстро, нужно руководствоваться значением задержки обратного восстановления диодов. Промежуток времени, в течение которого переключение запрещено:

∆t зад = 2t rr .


Поправка коэффициента заполнения:


Максимальный коэффициент заполнения:

При использовании биполярных транзисторов и транзисторов IGBT максимально возможный коэффициент заполнения уменьшает­ся за счет времени выключения и спада этих транзисторов, а также ха­рактерного «хвоста»:

Опыт показывает, что 1 коэффициент заполнения не превышает 0,45 в самом благоприятно^ случае.


Чем еще отличается реальная схема от идеальной? Сопротивления открытого диода и ключевого транзистора отличны от нулевого. Учесть падение напряжения на этих элементах (и поправку на коэф­фициент трансформации) можно так, как показано на рис. 14.11.

а) Выпрямительные диоды: в открытом состоянии на диоде падает в среднем 0,7.. .1,0 В (стандартный диод), либо 0,5. ..0,6 В (диод Шоттки);

б) Ключевые транзисторы: если в качестве ключа используется биполярный транзистор или транзистор IGBT, на ключе будет падать напряжение Uкэ (в режиме насыщения). Типичное значение напряже­ния насыщения - 0,2. ..0,5 В. Для транзистора MOSFET необходимо вычислить напряжение:


Предварительный расчет основных параметров схемы пуш-пульного конвертора должен определить коэффициент трансформации п и габаритную мощность трансформатора. Мы уже выяснили, что:

Иначе (с учетом падения напряжения на ключах и выпрямитель­ных диодах):


где - минимально возможное напряжение питания (задается в начале разработки).

К примеру, если проектируется преобразователь с батарейным пи­танием, в качестве этого напряжения можно принять значение напря­жения, измеренное на клеммах батареи в конце срока службы.


Необходимо также определить минимальное значение коэффици­ента заполнения γ min , исходя из максимального значения напряжения питания (этот параметр понадобится при определении параметров сглаживающего выходного фильтра):


Теперь можно перейти к определению габаритной мощности трансформатора, которая вычисляется как полусумма мощности, пе­реданной в первичную обмотку и полученной со вторичных обмоток. В случае двухобмоточного трансформатора габаритную мощность можно определить как сумму мощностей нагрузки и мощности, из­расходованной на схему управления (если преобразователь построен таким образом, что схема управления питается от этого же трансфор­матора):

Выбор необходимого магнитопровода для трансформатора осу­ществляется по формуле для габаритной мощности, выведенной в разделе «Как работает трансформатор». По этой формуле мы должны определить произведение SS 0 . Следует отметить, что для двухтактных преобразователей предпочтительнее использовать тороидальные магнитопроводы, поскольку трансформаторы, намотанные на них, получа­ются наиболее компактными. Итак, габаритная мощность трансформа­тора, намотанного на магнитопроводе конкретных размеров:

где η тр - КПД трансформатора (типичное значение 0,95...0,97) Разработчиком должно быть выполнено условие:


Число витков первичной полуобмотки можно найти по следую­щей формуле, которая представляет собой форму записи закона элек­тромагнитной индукции:


Число витков вторичной полуобмотки:


После этого нужно выбрать необходимый диаметр провода и про­верить заполнение окна медью. Если коэффициент а получится более 0,5, необходимо взять магнитопровод с большим значением S 0 и пере­считать количество витков.

Определить температуру перегрева трансформатора можно по следующей формуле:


где ∆E n - - перегрев (Т n = Т а + T n);

Т п - температура поверхности трансформатора;

Р п - суммарные потери тепла (на активном сопротивлении об­мотки и в магнитопроводе);

S охл -- площадь наружной поверхности трансформатора;

α-- коэффициент теплоотдачи (α = 1,2 10 -3 Вт/см 2 °С).

После расчета трансформатора нужно провести выбор силовых элементов по допустимым значениям токов и напряжений, облегчить при необходимости тепловой режим с помощью теплоотводящих ра­диаторов.

Очень важный вопрос, который сейчас необходимо рассмот­реть, - это выбор схемы управления двухтактным импульсным ис­точником. Не так давно все эти схемы приходилось проектировать на дискретных элементах, что рождало достаточно громоздкие и не слишком надежные решения. Микросборки, применяющиеся для уп­равления однотактными схемами стабилизаторов и преобразовате­лей, впрямую не годятся для использования в двухтактных схемах, поскольку нужно иметь, два парафазных выхода, управляемых одним генератором. Кроме того, микросхема должна содержать специаль­ный узел для гарантированного ограничения у, чтобы не допустить аварийных ситуаций и сквозных токов. Желательно наличие дополни­тельных входов защитного отключения. В последнее время было раз­работано большое количество специализированных микросхем, в ко­торых уже есть практически все необходимые узлы.

Широко применяющаяся для управления блоками питания компь­ютеров типа IBM-PC микросхема TL494 (выпускается фирмой Texas Instruments, имеет отечественный аналог КР1114ЕУ1) подробно опи­сана в доступной книге . Как пример, рассмотрим не менее инте­ресную микросхему СА1524 , выпускаемую фирмой Intersil. Эта микросхема содержит в своем составе цепи управления, контроля, нормально функционирует при питании от 8 до 40 В. Она может быть применена в составе любых схем стабилизаторов и преобразователей, описанных в этой книге.

Основные узлы микросхемы (рис. 14.12):

Термокомпенсированный опорный источник напряжения 5 В;

Точный RC-генератор;

Усилитель ошибки (разницы между требуемым напряжением на­грузки и реальным напряжением на выходе стабилизатора);

Компаратор схемы управления ключевыми транзисторами;

Усилитель ошибки по сигналу тока в первичной цепи;


двухтактный выходной каскад, построенный на быстрых биполярных транзисторах;

Схема дистанционного управления включением/выключением.

Рис. 14.12. Функциональные узлы микросхемы СА1524 фирмы Intersil

Широтно-импульсное регулирование (ШИР) было рассмотрено нами в главе, посвященной чопперной схеме стабилизатора. В данном случае схема ШИР работает точно так же. Единственную особенность составляют триггер и схема логики, которые «маршрутизируют» уп­равляющие импульсы, поочередно направляя их то на один выход (транзистор Sa), то на другой (транзистор Sb). Триггер синхронизиро­ван тактовыми импульсами с задающего генератора. Тактовые им­пульсы имеют некоторую длительность, которая служит для органи­зации защитной паузы между выключением одного силового транзи­стора и включением второго. Таким образом, коэффициент заполнения у тах не может быть более 0,45 (суммарное время паузы по двум выходам составляет 10%). Время паузы (dead time) можно регулировать, выбирая соответствующий номинал времязадающего кон­денсатора Ст. Частота работы задающего генератора определяется со­отношением rt и Ст (выбор этих элементов, показанных на рис. 14.13, осуществляется из графика, рис. 14.14). Можно заметить, что ощути­мые значения времени паузы получаются при достаточно больших номиналах емкости Ст. Если элементы времязадающей цепи уже вы­браны, «мертвое время» можно подрегулировать в пределах 0,5...5,0 мкс подключением конденсатора Cd к выводу 3, как показано на рис. 14.15. Величина этого конденсатора находится в пределах 100...1000 пФ. Однако такой способ разработчики схемы рекоменду­ют использовать только в крайнем случае.


Рис. 14.13. Элементы частотозада-ющей цепи Рис. 14.14. График выбора элементов времязадающей цепи

Еще один способ регулирования dead time заключается в ограни­чении величины напряжения усилителя ошибки (рис. 14.16).

Усилитель ошибки (выводы 1, 2, 9) имеет коэффициент усиления 80 dB (10000) и может быть снижен до необходимой величины вклю­чением резистора R L между выводами 1(2) и 9 (в зависимости от того, прямая или инвертирующая схема включения используется разработ­чиком импульсного источника). Частота единичного усиления усили­теля ошибки f -- 3 МГц. Разработчики микросхемы отмечают, что усилитель ошибки, не охваченный цепью обратной связи, имеет так называемый полюс передаточной характеристики в точке 250 Гц

(сдвиг фаз между входным и выходным сигналом на этой частоте до­стигает 45 градусов). Полюс хорошо видно на графике (рис. 14.18). Это еще одна причина, по которой нельзя использовать усилитель без цепей обратной связи, показанных на рис. 14.17.


Рис. 14.15. Дополнительный конденсатор Q, регулирующий «мертвое время» (а), и график выбора его номинала (б)

Рис. 14.16. Способ регулировки dead time посредством ограничения величины на­пряжения усилителя ошибки

Рис. 14.17. Обратная связь в усилите­ле ошибки

Источник без обратной связи может превратиться в генератор. Чтобы устранить возможность самовозбуждения, рекомендуется под-, ключать к выводу 9 корректирующую цепочку, как показано на. рис. 14.19.



Рис. 14.18. АФЧХ усилителя ошибки Рис. 14.19. Корректирующая цепочка, устраняющая самовозбуждение

Параметры микросхемы СА1524:

Напряжение питания 8...40 В;

Максимальная частота задающего генератора - 300 кГц;

Нестабильность выходного напряжения - не более 1 %;

Температурная нестабильность - не более 2%;

Диапазон емкости Ст - 0,001...0,1 мкФ;

Диапазон сопротивления rt - 1,8...120 кОм;

Входное смещение усилителя ошибки - 0,5 мВ;

Входной ток усилителя ошибки - 1 мкА;

Максимальное напряжение «коллектор-эмиттер» транзисторов Sa и Sb -40B;

Токовая защита срабатывает при превышении тока потребления микросхемы более 100 мА;

Время нарастания тока коллектора транзисторов Sa и Sb -0,2 мкс;

Время спада тока коллектора транзисторов Sa и Sb - 0,1 мкс.

Микросхема имеет также вход внешнего управления (вывод 10). Отключение происходит при подаче высокого уровня (номинальный ток 0,2 мА).

Мы вернемся к микросхеме СА1524 при практической разработке экспериментального пуш-пульного преобразователя, а сейчас рас­смотрим появившиеся в последнее время маломощные интегрирован­ные источники, построенные по пуш-пульной схеме. Нужда в мало­мощном преобразователе появляется тогда, когда необходимо получить напряжение, источник которого не имеет гальванической связи с остальной схемой. К примеру, цифровые устройства передачи инфор­мации по длинным линиям нуждаются в таких источниках. Помеха, наведенная в длинной линии, может повредить передающее и прием­ное устройства, поэтому линия связи развязывается с помощью согла­сующих трансформаторов или оптоэлектронных приборов. Активные согласующие линейные устройства требуют питания.

Второй пример использования гальванически развязанных источников гораздо ближе к тематике книги. Чуть позже мы будем рассматривать так называемый бутстрепный метод управления двухтактны­ми каскадами. Мы увидим, что в данной схеме нужен источник, гальванически развязанный с общим проводом. В динамическом режиме эту функцию, как окажется, с успехом может выполнить конденсатор. А вот в статическом режиме без нормального источника не обойтись. Еще совсем недавно эта задача решалась с помощью дополнительной; обмотки на сетевом трансформаторе, что, конечно, не способствовало уменьшению габаритов схемы. Появление миниатюрных преобразо­вателей изящно решило эту проблему .

Для примера разберем устройство микросхемы DCP0115 фирмы] Burr-Brown , функциональные узлы которой показаны на рис. 14.20, а внешний вид - на рис. 14.21. В составе микросхемы имеется высокочастотный генератор и двухтактный каскад, работающий; с частотой 400 кГц. К силовому каскаду подключен миниатюрный трансформатор, который, тем не менее, позволяет получить мощность 1 Вт на нагрузке (при выходном напряжении 15 В). Имеются также схема мягкого старта и схема блокировки при перегреве с возможно­стью восстановления после отключения. Выводы синхронизации" (sync in, sync out) используются, когда микросхема работает совмест­но с другими импульсными источниками, имеющимися в приборе. Синхронизация позволяет избежать биения частот и снизить излучае­мые радиопомехи. Микроисточник выполнен в корпусе DIP-14.

Двухтактный преобразователь

Двухтактный преобразователь - преобразователь напряжения, использующий импульсный трансформатор . Коэффициент трансформации трансформатора может быть произвольным. Несмотря на то, что он фиксирован, во многих случаях может варьироваться ширина импульса, что расширяет доступный диапазон стабилизации напряжения. Преимуществом двухтактных преобразователей является их простота и возможность наращивания мощности .

Двухтактный преобразователь похож на обратноходовый преобразователь , однако основан на другом принципе (энергия в сердечнике трансформатора не запасается).

Однофазный двухтактный преобразователь представляет собой двухтактный полномостовой генератор с трансформатором и выпрямитель с фильтром .

Принцип действия

Термин «двухтактный» иногда используется для описания любого преобразователя с двунаправленным возбуждением трансформатора. Например, в полномостовом преобразователе ключи, соединённые в Н-мост , изменяют полярность напряжения, подаваемого на первичную обмотку трансформатора. При этом трансформатор работает так, как будто он подключен к источнику переменного тока и производит напряжение на вторичной обмотке. Однако, чаще всего имеют в виду полумостовой преобразователь, нагруженный на первичную обмотку с отводом от середины.

В любом случае, напряжение вторичной обмотки затем выпрямляется и передаётся в нагрузку. На выходе источника питания часто включается конденсатор , фильтрующий шумы, неизбежно возникающие из-за работы источника в импульсном режиме.

На практике необходимо оставлять маленький свободный интервал между полупериодами. Ключами обычно является пара транзисторов (или подобных элементов), и если оба транзистора откроются одновременно, возникает риск короткого замыкания источника питания. Следовательно, необходима небольшая задержка, чтобы избежать этой проблемы.

Преимущества и недостатки

Транзисторы


Wikimedia Foundation . 2010 .

Смотреть что такое "Двухтактный преобразователь" в других словарях:

    - (Push–pull output) с использованием PNP и NPN биполярных транзисторов включенных как эмиттерные повторители Двухтактный выход схемотехническое решение электронного устройства, которое позволя … Википедия

    Двухтактный выход (en:push pull output) является видом электронной цепи, которая может пропускать через нагрузку и положительный и отрицательный ток. Двухтактные выходы присутствуют в ТТЛ и КМОП цифровых логических схемах и в некоторых видах… … Википедия

    Эквивалентная схема обратноходового преобразователя Обратноходовой преобразователь (англ. flyback converter) разновидность статических импульсных … Википедия

    Импульсный стабилизатор напряжения это стабилизатор напряжения, в котором регулирующий элемент работает в ключевом режиме, то есть большую часть времени он находится либо в режиме отсечки, когда его сопротивление максимально, либо в… … Википедия

    Инверторы напряжения инвертором напряжения (по зарубежной терминологии DC/AC converter) называют устройство, преобразующие электрическую энергию источника напряжения постоянного тока в электрическую энергию переменного тока. Инверторы… … Википедия

    Структура Н моста (показано красным) H мост это электронная схема, которая дает возможность приложить напряжение к нагрузке в разных направлениях. Эта схема очень часто используется в робототехнике и игрушечных машинах, чтобы изменять… … Википедия - Электронный усилитель усилитель электрических сигналов, в усилительных элементах которого используется явление электрической проводимости в газах, вакууме и полупроводниках. Электронный усилитель может представлять собой как самостоятельное … Википедия

0

Двухтактные преобразователи могут быть с самовозбуждением и с независимым возбуждением. В настоящее время в основном применяют преобразователи с независимым возбуждением, имеющие более высокий КПД. На практике применяют три основных схемы двухтактных преобразователей: с выводом нейтральной точки первичной обмотки трансформатора (со средней точкой), полумостовые и мостовые. Трансформатор, входящий в состав преобразователя имеет две идентичные первичные обмотки с числом витков W 11 = W 12 = W 1 и две идентичные вторичные обмотки с числом витков W 21 = W 22 = W 2 .

Рассмотрим установившийся режим работы идеального преобразователя в случае безразрывных токов дросселя L при широтно-импульсном управлении транзисторами VT1 и VT2. При переводе СУ транзистора VT1 в режим насыщения к первичной обмотке W 11 трансформатора будет приложено напряжение источника энергии U 0 .

В результате на зажимах вторичной обмотки W 21 появится ЭДС Е 2 с полярностью, обеспечивающей открытие диода VD1. При этом на интервале открытого состояния VT1 все остальные диоды и транзистор VТ2 будут закрыты.

Поскольку ЭДС Е 2 = U 0 n 21 = U 0 W 2 /W 1 , то к обмотке дросселя L будет приложено напряжение, равное U 0 n 21 - U н. Под действием этого напряжения ток в обмотке дросселя L будет нарастать до линейному закону от минимального до максимального значения, соответствующего моменту времени t = γТ, когда СУ переведет транзистор VT1 в закрытое состояние.

На этом временном интервале осуществляется передача энергии в нагрузку, накопление энергии в дросселе L и подзаряд конденсатора С1. При этом напряжение, приложенное к закрытому транзистору VT2, оказывается равным 2U 0 . При запирании транзистора VT1 меняется полярность ЭДС на зажимах всех обмоток трансформатора, что приводит к запиранию диода VD1 и открыванию диода VD3. В результате к обмотке дросселя будет приложено напряжение, равное напряжению на нагрузке, и он будет отдавать ранее запасенную энергию в нагрузку и конденсатор С1 (пока ток дросселя будет больше тока нагрузки). При этом напряжение, приложенное к закрытым транзисторам VT1 и VT2, оказывается равным напряжению источника энергии U 0 , так как трансформатор оказывается в режиме короткого замыкания (при отключенной первичной обмотки от источника энергии).

В момент t/T = 0,5 СУ переводит транзистор VT2 в открытое состояние, в результате чего первичная обмотка W 12 трансформатора (находящегося в режиме короткого замыкания) подключается к источнику энергии. Это приводит к резкому увеличению тока в обмотках W 22 и W 12 трансформатора. В момент, когда ток в обмотке W 22 достигает значения тока дросселя L, начинается процесс запирания диода VD3. На интервале 0,5Т ≤ t ≤ (0 5 + γ)Т транзистор УТ2 открыт и находится в режиме насыщения, а ток дросселя опять нарастает от минимального до максимального значения.

Регулировочная характеристика данного преобразователя имеет следующий вид: U H = 2n 21 γU 0 .

Как видно из выражения, регулировочная характеристика данного преобразователя отличается от регулировочной характеристики однотактного преобразователя с прямым включением диода только множителем 2. Однако в последнем случае требуется два отдельных трансформатора, расчетная мощность каждого из которых в два раза меньше мощности трансформатора двухтактного преобразователя. Кроме того, следует помнить, что перемагничивание материала магнитопровода в однотактных преобразователях с прямым включением диода осуществляется по частному несимметричному циклу перемагничивания, тогда как в данном идеальном преобразователе перемагничивание осуществляется по частному симметричному циклу. Поэтому размеры трансформатора в двухтактном преобразователе будут меньшими по сравнению с размерами двух трансформаторов однотактных преобразователей.

Выражение для критического значения индуктивности L кp дросселя L, обеспечивающей безразрывность тока дросселя при минимальном значении тока нагрузки J н min принимает для двухтактного преобразователя (или двух однотактных, работающих на общий фильтр) следующий вид:

Разница в работе будет заключаться в только том, что на интервалах закрытого состояния транзисторов оба диода на выходе преобразователя (VD1, VD2) будут открыты и через каждый из них будет замыкаться ток, равный половине тока дросселя. Например, широко применяемые в системах электропитания аппаратуры телекоммуникаций вольтодобавочные (стабилизирующие) преобразователи КВ-12/100 (КС-14/100) представляют собой рассматриваемый двухтактный преобразователь в варианте без диода VD3.

В реальных двухтактных преобразователях, работающих на частотах 20 кГц и выше, неодинаковое значение времени рассасывания избыточных носителей в транзисторах при их запирании приводит к тому, что приращение магнитного потока в трансформаторе на интервале открытого состояния одного транзистора отличается от приращения магнитного потока на интервале открытого состояния другого транзистора. В результате в двухтактных преобразователях может появиться так называемое одностороннее подмагничивание материла магнитопровода трансформатора. И, как результат, насыщение материала магнитопровода и короткое замыкание для источника энергии, приводящее к выходу из строя транзисторов. Другой причиной появления одностороннего подмагничивания является электрическая несимметрия схемы, возникающая, как правило, при низких уровнях выходного напряжения. Для того чтобы исключить явление одностороннего подмагничивания, приходится прибегать к существенному усложнению схемы управления в двухтактных преобразователях по сравнению с однотактными. С этой целью в схему управления вводится, например, устройство, следящее за средним значением токов транзисторов и при их разбалансировке обеспечивающее автоматическую коррекцию длительности включенного состояния транзисторов.

Рассмотренный преобразователь на практике применяется при относительно невысоких напряжениях источника энергии, так как напряжение, приложенное к закрытому транзистору, оказывается в два раза больше напряжения источника энергии. При высоком значении напряжения U 0 (в несколько сотен вольт) широко применяются полумостовые и мостовые схемы двухтактных преобразователей.

В полумостовом преобразователе параллельно источнику энергии с напряжением U 0 устанавливаются два последовательно соединенных между собой конденсатора с одинаковой емкостью. Первичная обмотка трансформатора TV1 включается между общей точкой этих конденсаторов и общей точкой транзисторов VT1 и VT2.

В идеальном преобразователе среднее значение напряжения на каждом из конденсаторов равно половине напряжения U 0 . При переводе СУ, например, транзистора VT1 в режим насыщения напряжение, приложенное к первичной обмотке трансформатора TV1, будет равно напряжению на конденсаторе С1. В результате ЭДС Е 2 на зажимах вторичной обмотки VT1 будет равна U 0 n 21 /2. При этом будут открыты диоды VD3 и VD6. Напряжение, приложенное к закрытому транзистору VT2, равное сумме напряжения на конденсаторе С2 и ЭДС первичной обмотки TV1, будет равно напряжению U 0 . Для того чтобы исключить интервалы, на которых оба транзистора открыты одновременно, длительности открытого состояния VT1 и VT2 должны быть меньше половины периода преобразования энергии. На интервалах открытого состояния VT1 (VT2) осуществляется передача энергии а нагрузку и ее накопление в дросселе L1 и конденсаторе С3. Кривые тока коллектора транзисторов, тока дросселя L1, напряжения на входе фильтра L1 С3 и напряжения на нагрузке по форме полностью совпадают с соответствующими кривыми. На интервалах выключенного состояния транзисторов открыты все четыре диода выходного выпрямителя и через каждый из них протекает ток, равный половине тока дросселя, при этом напряжение приложенное к закрытым транзисторам равно U 0 /2. Регулировочная характеристика полумостового преобразователя (при его работе в режиме безразрывных токов дросселя L1) имеет следующий вид: U H = γU 0 n 21 .

Выражение для критического значения индуктивности L кp дросселя L, обеспечивающей безразрывность тока дросселя при минимальном значении тока нагрузки I н min принимает для полумостового преобразователя следующий вид:

Полумостовые преобразователи обычно применяются при выходной мощности до нескольких сотен ватт, так как с увеличением выходной мощности резко увеличиваются габаритные размеры конденсаторов C1, С2. Кроме того, при прочих равных условиях ток коллектора транзисторов в полумостовых преобразователях в два раза больше, чем в мостовых преобразователях, что приводит к большим потерям в них и к увеличению габаритов радиаторов охлаждения транзисторов.

В мостовом преобразователе при классическом, так называемом симметричном способе управления транзисторами СУ обеспечивает синхронную коммутацию диагональных транзисторов (VT1 и VT4 на интервале первой половины периода, а затем VT2 и VT3 на интервале второй половины периода преобразования энергии). При этом на интервале открытого состояния любой пары диагональных транзисторов напряжение, приложенное к первичной обмотке TV1 и к каждому из закрытых транзисторов в идеальном преобразователе равно напряжению источника энергии. В остальном работа мостового преобразователя при симметричном способе управления транзисторами подобна работе рассмотренных выше двухтактных преобразователей.

В интервале открыты диагональные транзисторы VT1 и VT4, в результате ток i 1 , равный сумме намагничивающего тока (тока холостого хода) трансформатора и тока дросселя: L1, приведенного к первичной обмoтке, втекает в начало первичной обмотки TV, открыт выходной диод VD5 и осуществляется передача энергии в нагрузку и ее накопление дросселями L1 и L. При этом напряжение на конденсаторах С2 и С3. равно напряжению U 0 . В момент t 1 схема управления выключает VT4, вследствии чего ток i 1 начинает замыкаться по цепи: первичная обмотка TV (в том же направлении) - конденсатор С3 - открытый транзистор VT1 - дроссель L. Начинается быстрый процесс перезаряда конденсатора С3 и заряд конденсатора С4. За время, меньшее t зад, напряжение на конденсаторе С3 уменьшается до нуля, а на конденсаторе С4 нарастает до U 0 . После того как напряжение на С3 снизилось до нуля, открывается диод VD3 и ток i 1 далее замыкается через этот диод, так что к моменту t 2 - моменту открытия VT3 - напряжение на нем равно практически нулю, т. е. отсутствуют потери мощности при его открытии. В интервале первичная обмотка TV и дроссель L оказываются закороченными диодом VD3 и транзистором VT1, так что ток в этой цепи практически не претерпевает изменений. В момент t 3 выключается транзистор VT1 и начинается быстрый перезаряд конденсатора С2 (и заряд конденсатора С1), так что за время, меньшее t зад, напряжение на C2 спадает до нуля, после чего открывается диод VD2. До момента t 4 - момента открытия транзистора VT2 - ток, поддерживаемый дросселем L, замыкается через диоды VD2, VD3 и источник энергии U 0 , т. е. энергия, запасенная этим дросселем, возвращается в источник. Включение VT2 также происходит без потерь мощности. На интервале открыты VT2 и УТ3, ток i 1 меняет свое направление, открыт выходной диод VD6 и энергия передается от источника в нагрузку, а также запасается дросселями. Далее процессы в схеме протекают аналогичным образом.

Для исключения явления одностороннего подмагничивания трансформатора в полумостовых и мостовых ПН последовательно с первичной обмоткой трансформатора достаточно часто включается конденсатор. Такое введение конденсатора имеет место, например, в ПН блоков питания ПК, в выпрямителях ВБВ-60/25-3к.

На выходе любого из рассмотренных двухтактных преобразователей выходной выпрямитель может быть выполнен либо по однофазной мостовой схеме, либо по двухполупериодной схеме выпрямления. Однофазная мостовая схема выпрямления обычно применяется только при относительно высоких уровнях выходного напряжения (несколько десятков вольт и выше), так как характеризуется большими потерями в вентильном комплекте по сравнению с двухполупериодной схемой.

Используемая литература: Электропитание устройств и систем телекоммуникаций:
Учебное пособие для вузов / В. М. Бушуев, В. А. Демянский,
Л. Ф. Захаров и др. - М.: Горячая линия-Телеком, 2009. -
384 с.: ил.

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.

В автономной переносной и передвижной радиоаппаратуре, потребляющей сравнительно небольшие мощности, в качестве источников электроэнергии используются работающие независимо от внешней сети источники постоянного тока низкого напряжения: гальванические элементы, аккумуляторы, термогенераторы, солнечные и атомные батареи. Иногда для функционирования радиоаппаратуры возникает необходимость преобразования постоянного напряжения одного номинала в постоянное напряжение другого номинала. Эту задачу выполняют различные преобразователи постоянного тока, а именно: электромашинные, электромеханические, электронные и полупроводниковые.

В полупроводниковом преобразователе энергия постоянного тока превращается в энергию прямоугольных импульсов с помощью переключающего устройства. В качестве основных элементов этого устройства используются MOS FET и IGBT транзисторы и тиристоры. Преобразователи с выходом на переменном токе называются инверторами. Если выход инвертора, соединить с выпрямителем, включающим сглаживающий фильтр, то на выходе устройства, называемого конвертором, можно получить постоянное напряжение U вых, которое может существенно отличаться от напряжения на входе U BX ,, т.е. конвертор - это своеобразный трансформатор постоянного напряжения.

При высоком значении питающего напряжения, а также при отсутствии ограничений по массе и объему преобразователи рационально выполнять на тиристорах. Полупроводниковые преобразователи на транзисторах и тиристорах подразделяются на нерегулируемые и регулируемые, причем последние используются и как стабилизаторы постоянного и переменного напряжения.

По способу возбуждения колебаний в преобразователе различают схемы с самовозбуждением и с независимым возбуждением. Схемы с самовозбуждением представляют собой импульсные автогенераторы. Схемы с независимым возбуждением состоят из задающего генератора и усилителя мощности. Импульсы с выхода задающего генератора поступают на вход усилителя мощности и управляют им.

1. Преобразователи с самовозбуждением

Преобразователи с самовозбуждением выполняются на мощности до нескольких десятков ватт. В радиоустройствах они нашли применение как маломощные автономные источники, электропитания и как задающие генераторы мощных преобразователей, Структурная схема преобразователя с самовозбуждением приведена на рис. 1.

Рис. 1. Структурная схема преобразователя напряжения с самовозбуждением

На вход преобразователя подается постоянное питающее напряжение U BX . В автогенераторе постоянное напряжение преобразуется в напряжение, имеющее форму прямоугольных импульсов.

Прямоугольные импульсы с помощью трансформатора изменяются по амплитуде и поступают на вход выпрямителя, после которого на выходе преобразователя (конвертора) получим требуемое по величине и напряжение постоянного тока U вых . При прямоугольной форме импульсов выпрямленное напряжение по форме близко к постоянному, вследствие чего упрощается сглаживающий фильтр выпрямителя.

2. Однотактный преобразователь напряжения.

В основе работы схемы (рис. 2), как и большинства преобразователей, лежит принцип прерывания постоянного тока в первичной обмотке импульсного трансформатора с помощью транзистора, работающего в ключевом режиме.

Рис. 2. Однотактный полупроводниковый преобразователь

напряжения с самовозбуждением

В коллекторную цепь транзистора включена первичная обмотка трансформатора ω к, в эмиттерно-базовую цепь - обмотка обратной связи ω б. Поскольку обмотки ω к и ω б размещаются на одном магнитопроводе, то существующая между ними магнитная связь и порядок подключения концов обмоток обеспечивают в итоге положительную обратную связь в автогенераторе.

При подключении источника постоянного тока U BX в цепи коллектора транзистора VT и в обмотке ω к начинает: протекать ток, который вызывает нарастающий магнитный поток в магнитопроводе импульсного трансформатора. Этот поток, воздействуя на обмотку обратной связи ω б, наводит в ней ЭДС самоиндукции, причем обмотка ω б включается, относительно обмотки ω к таким образом, чтобы ЭДС, наведенная в ней, еще больше открыла транзистор (для р-п-р транзистора на базе относительно эмиттера создается дополнительное отрицательное напряжение). Когда магнитный поток достигнет насыщения, исчезнут ЭДС и токи в обмотках, появится противо-ЭДС, запирающая транзистор, и процесс начнется сначала. Необходимо отметить, что при открытом транзисторе VT вследствие небольшого значения его внутреннего сопротивления весьма небольшим будет падение напряжения на нем, даже при токе, равном току насыщения. Поэтому в этом случае практически все входное напряжение U BX приложено к первичной коллекторной обмотке трансформатора ω к.

В результате периодического включения транзистора по первичной обмотке трансформатора ω к потечет ток, импульсы которого будут иметь почти прямоугольную форму. Во вторичную обмотку трансформатора ω вых трансформируются импульсы той же формы, частоты следования и полярности; эти импульсы используются для получения выпрямленного напряжения с помощью однополупериодного выпрямителя. Резистор R Р Б в базе транзистора ограничивает ток базы.

Преобразователи описанного типа целесообразно применять при высоком значении выходного напряжения U B Ы X и малых токах, в частности, для питания высоковольтного анода в электронно-лучевых трубках. Основным недостатком однотактной схемы автогенератора является постоянное подмагничивание магнитопровода, обусловленное тем, что ток по коллекторной (первичной) обмотке трансформатора течет только в одном направлении, Постоянное подмагничивание ухудшает условия передачи мощности из первичной обмотки трансформатора во вторичную, и поэтому однотактные автогенераторы используют при малых мощностях (несколько ватт), когда невысокий КПД не является определяющим фактором.

Одной из популярнейших топологий импульсных преобразователей напряжения является двухтактный преобразователь или push-pull (в дословном переводе - тяни-толкай).

В отличие от однотактного обратноходового преобразователя (flyback), энергия в сердечнике пуш-пула не запасается, потому что в данном случае это - сердечник трансформатора, а не , он служит здесь проводником для переменного магнитного потока, создаваемого по очереди двумя половинами первичной обмотки.

Тем не менее, несмотря на то, что это именно импульсный трансформатор с фиксированным коэффициентом трансформации, напряжение стабилизации выхода двухтактника все равно может изменяться посредством варьирования ширины рабочих импульсов (с помощью ).

В силу высокой эффективности (КПД до 95%) и наличия гальванической развязки первичной и вторичной цепей, двухтактные импульсные преобразователи широко используется в стабилизаторах и инверторах мощностью от 200 до 500 Вт (блоки питания, автомобильные инверторы, ИБП и т.д.)

На рисунке ниже изображена общая схема типичного двухтактного преобразователя. Как первичная, так и вторичная обмотки имеют отводы от середин, чтобы в каждый из двух рабочих полупериодов, когда активен только один из транзисторов, была бы задействована своя половина первичной обмотки и соответствующая половина вторичной обмотки, где напряжение упадет лишь на одном из двух диодов.

Применение двухполупериодного выпрямителя с диодами Шоттки, на выходе двухтактного преобразователя, позволяет снизить активные потери и повысить КПД, ведь экономически гораздо целесообразнее намотать две половины вторичной обмотки, чем нести потери (финансовые и активные) с диодным мостом из четырех диодов.

Ключи в первичной цепи двухтактного преобразователя (MOSFET или IGBT) должны быть рассчитаны на удвоенное напряжение питания, чтобы выдержать действие не только ЭДС источника, но и добавочное действие ЭДС, наводимых во время работы друг друга.

Особенности устройства и режима работы двухтактной схемы выгодно отличают ее от полумостовой, прямоходовой и обратноходовой. В отличие от полумостовой, здесь нет необходимости развязывать цепь управления ключами от входного напряжения. Двухтактный преобразователь работает как два однотактных прямоходовых преобразователя в одном устройстве.

К тому же, в отличие от прямоходового, духтактному преобразователю не нужна ограничительная обмотка, так как один из выходных диодов продолжает проводить ток даже при закрытых транзисторах. Наконец, в отличие от обратноходового преобразователя, в двухтактнике ключи и магнитопровод используются более щадящим образом, а эффективная длительность импульсов больше.

Во встроенных блоках питания электронных устройств все более популярны двухтактные схемы с управлением по току. При таком подходе проблема повышенного напряжения на ключах исключается на корню. В общую истоковую цепь ключей включается резистор-шунт, с которого снимается напряжение обратной связи для защиты по току. Каждый цикл работы ключей ограничивается по длительности моментом достижения током заданной величины. Под нагрузкой выходное напряжение, как правило, ограничивается посредством ШИМ.

При проектировании двухтактного преобразователя особое внимание уделяют подбору ключей, чтобы сопротивление открытого канала и емкость затвора были бы как можно меньше. Для управления затворами полевых транзисторов в двухтактном преобразователе чаще всего применяют микросхемы-драйверы затворов, которые легко справляются со своей задачей даже на частотах в стони килогерц, свойственных импульсным источникам питания любой топологии.



Похожие статьи