Как сделать ветряк своими руками. Возможен ли вообще самодельный ветрогенератор? Особенности парусного ветрогенератора: история, современная конструкция и создание своими руками Как сделать винт парусный для ветрогенератора

В этом разделе представлены различные конструкции ветрогенераторов парусного типа. Парусные ветрогенераторы хоть и имеют не высокий коэффициент использования энергии ветра, проще говоря КПД, но они при малых скоростях ветра имеют хороший крутящий момент, что в сочетании с ветроколесом большого диаметра позволяет через мультипликатор из генератора выжимать неплохую мощность.

Часто такие ветрогенераторы используют для отопления или подъема воды напрямую с механической передачей прямо на насос. Как правило такие ветрогенераторы не строят маленькие и нормальный диаметр ветроколеса начинается от 5метров. Здесь низкий КИЭВ компенсируется большой площадью винта, а низкие обороты преобразуются мультипликатором в нужные для работы генератора.

>

История проэкта Парусный ветряк часть 1

История проэкта Парусный ветряк часть 2

Все началось с построения действующей модели парусного ветрогенератора, чтобы изучить и понять как это все работает, а далее ветрогенератор начал воплощаться в металле, первые лопасти были сшиты из простыней.

>

Парусный ветряк - "Водокачка" для подъема воды

Парусный ветрогенератор для подъема воды. Конструкция максимально простая, насос для подъема воды полностью самодельный, мембранного типа. Ветряк сделан как можно проще, так сказать проверить работоспособность ветряной водокачки, кочает на ветру 6м/с около 10 литров за 15 минут.

>

Парусный ветрогенератор своими руками.

Ветрогнератор своими руками, парусный ветрогенератор в фотографиях. Небольшой фото-отчет о том как делался и монтировался ветряк, данных особых нет. Известно что максимальная мощность при нагрузке на лампы достигала 4кВт*ч. Пока ветрогенератор заряжает аккумулятор 155Ач 12вольт.

>

Парусный ветрогенератор 4Кв.

Небольшой фото отчет и описание создания ветрогенератора парусного типа для зарядки аккумуляторов. Ветроголовка собрана из мультипликатора и двух автомобильных генераторов на 24 вольта. Привод с вала мультипликатора ременной, на каждый генератор по отдельности. Диаметр ветрокрлеса 5 метров, паруса сделаны из банерной ткани.

Различают два вида лопастей ветрогенераторов по жесткости: жесткие и парусные.

Жёсткие лопасти для ветрогенератора

Роторы могут изготавливаться с лопастями из различных материалов и разной степени жесткости. Классические установки промышленного образца используют жесткие материалы. Это дает возможность стабилизировать эксплуатационные параметры изделий во времени, обеспечить повторяемость характеристик ветрогенераторов и увеличить ресурс лопастей ротора, так как жесткая поверхность лучше противостоит воздействию внешней среды.

Ветер несет частицы пыли, сверху льется дождь и сыпется град. Поверхность крыльев, изготовляемых серийно различными предприятиями из соответствующих жестких материалов, сохраняет форму и качество поверхности в течение всего срока эксплуатации изделия.

Не стоит забывать, что от того, насколько гладка поверхность крыла зависит сопротивление крыла в потоке воздуха, особенно на высоких скоростях вращения ротора. Профиль крыла рассчитывается таким образом, чтобы добиться максимальной эффективности использования ветра, и внешнее воздействие снижает эту эффективность.

Поэтому, для производства жестких лопастей для ветрогенератора предприятия используют различные пластмассы, металл и наборное дерево, обработанное особым образом.

Парусный ветрогенератор

Главным отличием лопастей парусного вида является намного меньшая стоимость материала, простота изготовления и ремонта. Эти преимущества привлекают многих, кто делает ветрогенератор своими руками.

В качестве материала может использоваться ткань, фанера, тонкие металлические листы и другие, доступные в быту и легкие в обработке подходящие товары из хозяйственного магазина. Какие же еще положительные особенности привлекают строителей ветроустановок?

Самая важная особенность – большая суммарная рабочая поверхность парусных лопастей. Дело в том, что парусный ветрогенератор может стартовать и давать энергию при мизерных значениях скорости ветра – меньше полуметра в секунду. Конечно, парусная лопасть за счет своей неаэродинамической формы снизит эффективность работы по мере увеличения скорости вращения, но задача в данном случае состоит в отборе энергии именно слабого ветра, преобладающего в средних широтах. И с этой задачей ротор данного вида справляется лучше остальных, так как принцип его действия отличается от принципа ротора с жестким крылом.

Выше по тексту было написано “профиль крыла рассчитывается таким образом, чтобы добиться максимальной эффективности”. Но проблема состоит в том, что нет просто максимальной эффективности, а есть максимальная эффективность при определенных условиях, таких как скорость движения в воздушном потоке и угол атаки. Поэтому, для того, чтобы получить нужную величину эффективности необходимо, чтобы жесткая лопасть достигла той суммарной векторной скорости движения относительно потока воздуха, которая была заложена при расчете профиля крыла. А до того момента лопасть работает крайне неэффективно. И именно этого недостатка лишен парусный ротор.

Затраты на изготовление лопастей для ветрогенератора

Рассмотрим, что включают затраты на изготовление жесткого и парусного роторов.

Поскольку штатный режим работы жесткого ротора предполагает высокую скорость вращения, то понятно, что к профилю лопасти предъявляются повышенные требования. Это приводит к увеличению затрат на высококачественные материалы и дорогостоящее оборудование.

Парусные роторы вращаются с невысокой скоростью, поэтому на форме и чистоте обработки поверхностей можно сэкономить. Но низкая скорость приводит к появлению другой проблемы. Мощность электрического тока, вырабатываемого генератором, напрямую зависит от скорости вращения ротора. Чем быстрее вращается ротор – тем больше энергии вырабатывается.

Эту проблему можно решить двумя способами – подключив генератор через редуктор-мультипликатор с высоким КПД, или применив специальный низкооборотный генератор.

Оба варианта достаточно дороги, но второй предпочтительнее, потому что, каким бы ни был высоким КПД редуктора, он не может достичь 100%, и часть энергии будет теряться.

Таким образом, на вопрос о том, какой ветрогенератор обойдется дороже в изготовлении можно ответить так.

Если вы собираетесь ставить его в средних широтах, где среднегодовая скорость ветра не превышает 4 м/с, то дороже обойдется жесткое крыло, поскольку в среднем ротор будет находиться не в штатном режиме работы. А фактически, он большее время будет просто стоять, так как не сможет стартовать.

Парусная ветроустановка, в самом худшем случае будет практически постоянно давать энергию, т.к. 4 м/с для нее хоть и невысокая, но вполне подходящая скорость.

Материалы лопастей ветровых установок

Для изготовления жестких роторов в настоящее время активно используют металл, стекло- и углепластик. Иногда лопасти печатают на широко распространенных в последнее время 3-D принтерах.

При создании парусного ротора применяются всевозможные современные ткани -, NewSkytex, Toray ,Cuben, Gelvenor, Sofly и другие.

В случае применения низкооборотного генератора высокая скорость вращения не понадобиться. В таком случае необходимо предусмотреть устройства регулирования шага винта.

Говорят, новое - хорошо забытое старое. И энергетика здесь, похоже, не является исключением. Ожегшись на Чернобыле, столкнувшись в ряде мест с угрозой энергетического кризиса, человечество все чаще обращает свой взор на технические решения, незаслуженно списанные в прошлом в архив. Использование даровой силы ветра - в числе именно таких решений. Приходят к ним в своих творческих изысканиях и любители мастерить все своими руками (см., например, «М-К» № 4/84, 5/86, 6/90, 7/92|.

В этой связи предлагаемая публикация сделанная по материалам американского журнала «Механик иллюстрейтед», думается, представляет особый интерес и актуальность для многих наших читателей.

Идея - обуздать ветер, обеспечив тем самым сеЬя даровой электроэнергией,- несомненно, весьма заманчива. Но выпускаемые промышленностью ветроэнергоустановки не всегда подходят для размещения их, например, возле загородного дома. Да и цены на них астрономические.

Альтернативой может стать вполне доступная с точки зрения семьи со средним достатком самодельная ветроэнергоустановка - такая, как изображена на публикуемых иллюстрациях. За исключением синхронного электрогенератора переменного тока, ее конструкция не содержит дорогих и остродефицитных деталей и узлов. Проста (а следовательно, надежна в работе, легка в изготовлении и наладке) кинематика. А энергетические возможности таковы, что при средней скорости ветра Увср=4,8 м/с. они с лихвой обеспечат потребность в электроэнергии небольшого дома с усадьбой и хозяйственными постройками.

«Изюминка» всей конструкции здесь - ветровое колесо. Во-первых, оно лопастное. Уступая простейшему роторному некоторой архаичностью своего внешнего вида, напоминающего средневековые мельницы, с которыми сражался небезызвестный Дон-Кихот, этот ветряк выигрывает в главном: мощности, отдаваемой в нагрузку. Во-вторых, в паре с ветром в данном случае работает… парус - на каждой из трех лопастей с изменяемой площадью Б* и самоограничением, предусмотренным для сильных ветров.

Дело в том, что лопастной узел у крыла ветряка состоит из жесткой передней кромки, ребер соответствующего сечения и «закрутки», обеспечивающих оптимальный режим работы концевой, средней частей и основания, а также задней кромки, натяжение которой обеспечивает стальной трос. Парус лопасти - из пропитанного синтетическим лаком капрона. Он натянут на остов с закреплением прижимной планкой на распорке-основании (см. рис.), а благодаря тросу - всегда упруг. Ткань после пропитки синтетическим лаком отнюдь не потеряла своей эластичности, и лопасть способна изменять форму в ответ на порывы ветра. Автоматически принимает и наилучший для каждой конкретно складывающейся ветровой нагрузки угол тангажа.

Ну а случись - налетит ураган. Что тогда? Да ничего страшного не произойдет. Трос, задающий натяжение задней кромке, напряжен так, что при скоростях ветра, превышающих рабочий диапазон, парус опадает, становится как бы недействующим: возникает режим самоограничения, причем - автоматически.

Из других технических решений, удачно вписавшихся в конструкцию данной ветроэлектроустановки, нельзя не отметить также простоту и надежность выполнения опорно-поворотного узла, съем электроэнергии в нагрузку, использование в кинематической схеме не углового редуктора, а обычных цепных передач, успешное размещение практически всей кинематики в капсуле обтекателя. Неплохо зарекомендовала себя в деле и сама капсула.

Особенности изготовления основных узлов, как и всей рассматриваемой ветроэлектроустановки,- следствие ее оригинальности.

Взять, к примеру, переднюю кромку лопастного узла. По сути своей это кессонная конструкция. Для нее нужен остов: лонжерон с соответствующими взаимосвязанными элементами. А их не сделать без шаблонов.

Шаблонов потребуется шесть. Два - для образующих ребра

блоков, три - для сборочного приспособления лопастного узла (стапеля) и один - для исходной заготовки ребра. При их изготовлении требуются максимальные аккуратность и сосредоточенность, чистота разметки.

1 – потребитель электроэнергии (нагрузка), 2 синхронный электрогенератор с трансмиссией в капсуле обтекателя. 3 - лонжерон лопасти (3 шт.), 4 - кок ветроколеса, 5 - лопасть парусная (3 шт.), 6 опорно-поворотный узел, 7 - мачта из металлических ферм, 8 – оттяжки.

1- ветроколесо трехлопастное парусное, 2- шарикоподшипник радиально-упорный (2 шт.), 3 - труба опорная квадратного сечения, 4 - вал ведущий, 5 - шарикоподшипник радиальный (2 шт.), 6 - промежуточный вал, 7 - передача силовая с приводной роликовой цепью ПР-19,05, 8 - обтекатель, 9 - передача силовая с приводной роликовой цепью ПР-12,7, 10 - генератор синхронный мощностью 1200 Вт, 11 - стойка-труба внутренняя, 12 - подшипник радиальный самосмазывающнйся, 13 - стойка-труба внешняя, 14 - подпятник, 15 - мачта нз металлических ферм.

1 - планка прижимная (полоса сечением 3X25 мм, АЛ9-1), 2 - распорка-основание (отрезок склепанных и «эпоксидированных» вместе алюминиевых уголков 25X25 мм с приданием нужной конфигурации), 3 - парус (пропитанное синтетическим лаком капроновое полотно массой 113,4 г), 4 - большая укосина (12-мм алюминиевый прокат), 5 - особой конфигурации), 9 - ребро-«сандвич» (склепанные и «эпоксидированные» вместе заготовки из 6-мм листа АЛ9-1; 3 шт.), 10 - кронштейн стыковочный (20-мм отрезок алюминиевого уголка 25X25 мм, 6 шт.), 11 - малая укосина (12-мм алюминиевый прокат), 12 - законцовка (отрезок склепанных вместе и «эпоксидированных» алюминиевых уголков 25Х 25 мм), 13 - гильза свинцовая (12-мм отрезок сплющиваемого цилиндра с наружным диаметром 12 мм и внутренним - 3 мм, 2 шт.), 14 - оболочка троса (два последовательно составленные отрезка полиэтиленовой трубки), 15 - трос натяжной.

1 - полоса усиления (75-мм ширины капрон) законцовочной части, 2 - припуск шва 20-мм, 3 - заготовка полотна паруса (капрон, сложенный вдвое), 4 - полоса усиления основания (75-мм ширины капрон).

1 - ребро-«саидвнч» (3 шт.), 2 - «носик» раскорки-законцовки, 3 - кронштейн стыковочный (6 шт.), 4 - хвостовик распорки-законцовки и (такая же деталь) распорка-середина, 5 - распорка-основание.

1 - формующий брусок (20-мм фанера), 2 - кронштейн стыковочный, 3 - контур деревянного блока, а равно - второго слоя у ребра-«сандвича», 4 - первый слой ребра-«саидвича».

1 - базис, 2 - распорка, 3 - стойка-фиксатор лонжерона лопасти (2 шт.), 4 - шаблон для выполнения работ на основании паруса, 5 - плаика усиления (3 шт.), 6 - стойка-фиксатор середины паруса, 7 - стойка для работ на законцовке. Все детали стапеля изготавливаются из 20-мм фанеры, крепление - на шурупах. Стрелками указаны направления, в которых прикрепляются ребра-«сандвичн» к стапелю на предусмотренные для них места.

1 - вал ведущий (диаметр 25 мм, длина 1500 мм, Сталь 45), 2 - кок ветроколеса (Д16), 3 - держатель (полоса сечения 3×25 мм, Ст3, 3 шт., 4 - спица ступицы приварная (стальной уголок 25 X 25 мм, 3 шт.), 5 - ступица {Сталь 20), 6 подшипниковый узел ведущего вала (2 шт.), 7 - горизонтальный кронштейн (стальной уголок 25X 25 мм, 2 шт.), 8 - труба опорная стальная (в сечении - квадрат 50Х 50 мм, толшина стенки 4 мм) с наварными квадратными стальными 4-мм щечками на концах, 9 - звездочка Z3=45 (Сталь 45), 10 - цепь ПР 12,7, II - кронштейн вертикальный (300-мм отрезок стального швеллера № 8, приваренный к боковым стенкам опорной трубы), 12 - гайка М14 с шайбой Гровера (4 шт.), 13 - промежуточный вал (диаметр 20 мм, длина 350 мм, Сталь 45), 14 - подшипниковый узел промежуточного вала (2 шт.), 15 - болт М14 (4 шт.), 16 - цепь ПР-19,05, 17 - звездочка Z2= 18 (Сталь 45), 18 - звездочка Z1 = 42 (Сталь 45), 19 - болт М18 (4 шт.), 20 звездочка Z4= 17 (Сталь 45), 21 - кронштейн коробчатый (размеры по месту установки в зависимости от типа генератора, Ст3, 2 шт.), 22-генератор электрический, синхронный, мощностью 1200 Вт, 23 - опорно-поворотный узел, 24 - стойка-труба стальная внутренняя (длина 90 мм, внешний диаметр 60 мм, толшина стенки 4,5 мм), 25 - укосина приварная (305 мм отрезок стального уголка 25X 25 мм, 2 шт.), 26 - шайба стопорная (4 шт.), 27 - гайка М18 (4 шт.), 28 - гайка М12 самоконтрящаяся прорезная (6 шт.), 29 - лонжерон лопасти (1830-мм отрезок трубы с внешним диаметром 50 мм и толщиной стенки 3,5 мм, АЛ9-1, режим термообработки Т6, 3 шт.), 30 - болт М12 (6 шт.).

1- шпангоут основной (многослойная фанера, 3 шт.), 2 - продольная панель обшивки люка (12-мм фанера, 2шт.), 3 - лонжерон (рейка из многослойной фанеры, вырезанная с изгибом после 3-го шпангоута, 4 шт.), 4 - соединение болтовое М16 с самофиксацией (8 шт.), 5 - кронштейн-направляющая (100-мм отрезок стального уголка 40Х Х40 мм, 4 шт.), 6 - полоса обшивки (фанера, суживающаяся по ширине после прогиба на 3-м шпангоуте, 23 шт.), 7 - шпангоут переходной (20-мм фанера), 8 - шпангоут концевой, 9 - покрытие стеклопластиковое, 10 - насадка конусообразная (максимальный диаметр 386 мм, пенопласт) ,11 - поперечная панель обшивки люка (20-мм фанера).

1- кронштейн приварной (стальной уголок 25Х 25 мм), 2- заклепка (4 шт.), 3 - кабель электрический, 4 - клемма н подвод к щетке контактной (2 шт.), 5 - жила электрокабеля (2 шт.), 6 - 5-мм пластина стеклотекстолитовая, 7 - упор-кронштейн (алюминиевый уголок 12Х 12 мм, 2 шт.), 8 - пружина с контактным винтом (2 шт.), 9 - гнездо-направляющая (алюминиевая труба квадратного сечения с элементами крепежа, 2 шт.), 10 - щетка контактная (2 шт.) ,11 - электропривод изолированный (2 шт.), 12 - стойка-труба стальная внутренняя, 13 - кольцо латунное с контактным винтом (2 шт.), 14 - втулка текстолитовая с двумя установочными винтами, 15 - шайба (Ст3) гребенчатая с двумя установочными винтами, 16 - подшипник радиальный самосмазывающийся (АФГМ), 17-стойка-труба стальная наружная, 18 - подпятник (БрАЖ9-4), 19 - болт М24 с гайкой и фиксацией затяжки.

Два шаблона (см. рис. 6, поз. 1) приклеивают к отрезку 20-мм фанеры. Следуя контуру, вырезают ножовкой или лобзиком две образующие ребро фанерные подкладки. Просверливают 5-мм отверстия под центр лонжерона и разметки сборки. Закругление радиусом 2,5 мм (для загибания фланца) и пятиградусный срез заднего угла выполняют с помощью рашпиля.

Шаблон (поз. 4 рис. 6) с 15-мм кромкой под фланец приклеивают к 6-мм алюминиевому листу АЛ9-1, прошедшему термообработку Т4. Получившуюся заготовку аккуратно вырезают; просверливают лонжеронный центр, а для правильной установки на стапеле - соответствующие отверстия. Это своеобразный новый шаблон для изготовления еще восьми таких заготовок (по 3 шт. на каждую лопасть).

Ребра-«сандвичи» получают, «прослаивая» заготовки между двух формующих блоков (подкладок). Жесткой фиксации добиваются, вставляя 5-мм болты через отверстие в стапеле и отверстие лонжеронного центра в формующие блоки с заготовками. А чтобы «прослаивание» шло успешнее, будущие «сандвичи» зажимают в кузнечных тисках. Отгибания фланцев в нужные стороны достигают, используя резиновый молоток.

Формовку фланца завершают, используя свинцовый мягкий припой. После чего получившееся ребро вынимают, подрезают задний край, чтобы максимально приспособить к лонжерону. Теперь дело за остальными деталями лопасти.”

Стыковочные кронштейны изготавливают из алюминиевого уголка 25X25 мм. Из него же выполняют распорки для удержания каната и натяжения задней кромки в основании, в середине и на законцовке лопасти. Делают их весьма своеобразно: не из одного, а их двух отрезков алюминиевого уголка, склепанных и «эпоксидированных» вместе. Длина такой заготовки 2,4 м. В своем сечении она напоминает букву Т. Высокое качество шва достигается тщательной очисткой поверхностей до их соединения, для чего используют сильные моющие средства с последующим «прополаскиванием водой и протиранием до блеска металлической «путанкой».

Нужной формы у распорок добиваются, воспользовавшись ножовкой по металлу. А вырез для лонжерона, заклепочные и тросовое отверстия высверливают электродрелью. Как, впрочем, и отверстия в распорке-основании для прикрепления впоследствии прижимной планки, чтобы надежно удерживать парус на лопасти даже во время самых больших ветровых нагрузок.

Что касается стыковочных кронштейнов, то они приклепываются и «эпоксидируются» и к распоркам (см. иллюстрации), и к ребрам-«сандвичам», и к лонжерону лопасти. Причем удобнее это делать на специальном приспособлении - стапеле, благодаря которому обеспечивается единообразное выполнение лопастей и правильно устанавливаются углы тангажа.

Вот одна из таких операций.

Ребра-«сандвичи» прикрепляют болтами к стапелю на предусмотренные для них места (в направлениях, указанных на рис. 7 соответствующими стрелками, и по установочным отверстиям, которые сделаны как в стапеле, так и в самих ребрах). Затем аккуратно укладывают, начиная с законцовки, «боковые полочки» тросовых распорок на предназначенные для них «постаменты», располагающиеся под требуемыми углами к базису торцы фанерных выступов: стойки 7, стойки-фиксатора 6 и шаблона 4 (см. рис. 7). Лопастный лонжерон продевают в образовавшиеся на стапеле отверстия, благо полукруглые выемки радиусом 25 мм для этого специально и предусмотрены.

Выполняют разметку заклепочных отверстий в лонжероне. Потом последний вынимают, сверлят в нем отверстия. А установив лонжерон вновь в стапеле, приклепывают и «эпоксидируют» стыковочные кронштейны.

Алюминиевую обшивку передней кромки лопасти выполняют из 6-мм листа АЛ9-1, предварительно изогнув его в виде параболы. Причем последнее лучше сделать на ровном полу с помощью длинной доски, наложенной ребром по оси изгиба. Упершись коленями в доску, руками, всем телом создают необходимое давление на лист, добиваясь получения желанной формы.

Следующая операция - прикрепление обшивки к лопастному скелету. При этом целесообразно воспользоваться специальными С-образными зажимами (на иллюстрациях не показаны).

Начиная с законцовки, просверливают заклепочные отверстия в покрытии, лонжероне и в ребрах. Соединяемые детали «эпоксидируют» и приклеивают. А после того как «эпоксид» затвердеет окончательно, выполняют обрезку «избыточного» алюминия с опиловкой образовавшихся острых краев.

Теперь - несколько слов о задней кромке лопасти. Монтируется она с 3-мм гибким стальным тросом, который продевают через предназначенные для него отверстия в распорках. Трос устанавливают в хлорвиниловые трубки и закрепляют у законцовки, зажав его в свинцовой гильзе. После чего на лопастный скелет натягивают парус.

Столь ответственную операцию лучше выполнять вдвоем. Один человек встает на стол, удерживая в своих руках лопасть таким образом, чтобы распорка-основание находилась внизу, а трос задней кромки располагался вертикально с навешенной на конце двухпудовой гирей. Тогда другой (помощник), убедившись, что требуемое натяжение достигнуто, запрессовывает на тросе вторую, находящуюся у распорки-основания свинцовую гильзу. Излишек троса и гильзы обтачивают. А «открытый» конец паруса заворачивают с последующим закреплением на распорке-основании с помощью прижимной планки и болтов с гайками.

Остальные лопасти изготавливают аналогичным образом. Что касается других узлов и деталей, то их выполнение особых трудностей, как правило, ни у кого не вызывает. То же можно сказать и о сборке всей ветроэлектроустановки в целом. Проста и отладка. Дерзайте!

Материал подготовил к публикации Н. КОЧЕТОВ


Довольно интересную конструкцию выбрал автор этого ветрогенератора. Это парусный ветрогенератор с мачтой фермного типа и мощностью до 4 кВт в час.

Материалы и детали использованные при строительстве этого ветрогенератора:
1) детали от моста и колесных дисков
2) профильная труба
3) лебедка
4) двигатель постоянного тока на щетках и магнитах 1971 года выпуска

Рассмотрим более подробно конструкцию этого ветрогенератора.


Под основание мачты автор выкопал яму и залил ее бетоном. В бетоне сделаны закладные для прикручивания мачты на болты.Благодаря такому основательному подходу в креплении будет уверенность в надежности мачты к любым ветрам.


Затем автор приступил к изготовлению поворотной оси ветрогенератора. Ось была выполнена из деталей от моста и колесных дисков. Общий вес конструкции получился порядка 150 килограмм.

Для поднятия и установки деталей на уже поставленную мачту ветрогенератора автор использовал простую лебедку.
Таким образом сначала была поднята поворотная конструкция, а затем и сам генератор.


В то же время он занимался над конструкцией ветроколеса.


Затем на каркас ветроколеса были одеты паруса.


После чего начался монтаж ветроколеса на мачту генератора. Подъем осуществлялся с помощью той же лебедки. После чего ветроколесо было установлено на свое место и закреплено болтами.

В таком виде ветрогенератор уже приступил к работе и выдавал необходимую энергию для зарядки аккумуляторов.

На этой картинке вы можете видеть электрическую схему балластного регулятора.

Так же был сделан контроллер зарядки и отбора мощности.


А на само ветроколесо были одеты более прочные паруса.

Автор строил данный ветрогенератор как эксперимент. В итоге данный экспериментальный образец проявил себя превосходно. На момент окончания данных модернизаций ветрогенератор использовался в комплекте с аккумулятором 12 вольт 155А. Конструкция была дополнена стандартным инвертором 12\220 вольт, благодаря чему автор мог использовать телевизор, ноутбук и прочие бытовые электроприборы от энергии ветрогенератора. В дальнейшем автор планирует сделать преобразователь, катушку Тесла для передачи энергии без проводов, то есть продолжить экспериментировать.

Экология потребления.Наука и техника: Можно сказать, что парусный ветряк один из самых простых, но в тоже время один из самых неэффективных существующих ветряков. КИЭВ парусного ветряка не может быть выше 20% даже теоретически.

Человечество использует паруса с незапамятных времен, уже много тысяч лет. Вобщем, сколько себя помнит. Когда о аэродинамике еще и понятия не имели. Но ветряные мельницы уже крутились и лодки под парусами уже плавали. Правда в те времена пользовались обычно плоскими парусами. В средние века были изобретены паруса более совершенные, что тут же повлекло резкий скачок в развитии мореплавания, и как следствие - наиболее громкие географические открытия. Но до сих пор парус продолжает служить и будет служить людям до тех пор, пока дует ветер.

Как выглядит парусный ветряк вам должно быть понятно из фотографий. Не вдаваясь в дебри аэродинамики, можно сказать, что парусный ветряк один из самых простых, но в тоже время один из самых неэффективных существующих ветряков. КИЭВ парусного ветряка не может быть выше 20% даже теоретически. Это означает, что вы будете получать только 1/5 часть мощности ветрового потока, попадающего на лопасти парусного ветряка. Например, если ветер дует со скоростью 5 м/с, а ветряк у вас 5 метров в диаметре, то мощность ветрового потока будет ок. 1500 Ватт. Вы же реально можете снять с ветряка только 300 Ватт (в лучшем случае). И это с пятиметровой конструкции!

К счастью только низким КИЭВ (коэффициент использования энергии ветра) недостатки парусного ветряка и ограничиваются. Дальше идут только достоинства.

Парусный ветряк - самый тихоходный ветряк. Его быстроходность редко приближается к 2, а обычно находится в диапазоне от 1 до 1,5. И все из за его чудовищной аэродинамики.

С другой стороны, парусный ветряк - один из самых чувствительных ветряков. Он работает с самого низа диапазона скоростей ветра, начиная буквально от штиля, с 1-2 метров в секунду. А это намаловажный фактор в условиях центральной России, где ветер редко бывает больше 3-5 метров в секунду. Тут, где более быстроходные ветряки по большей части бьют баклуши, парусный ветряк будет хоть что то выдавать. Хотя, как вам наверное известно, Россия не славится ветряными мельницами, тут не приморская Голландия и ветра нас не балуют. Зато было много водяных мельниц.

Еще одним достоинством парусного ветряка является удивительная простота его конструкции. Вал ветряка, на подшипниках, естественно, на валу - ступица. К ступице прикреплены «мачты», обычно из от 8 до 24-х. А от мачт отходят косые паруса из прочной тонкой материи, как правило, синтетической. Другая часть паруса крепится шкотами, которые выполняют и роль регуляторов угла поворота парусов и роль противоштормовой защиты. Т.е. самое примитивное парусное вооружение, проще, чем на самой простой яхте.

Именно эта простота конструкции и не позволяет отправлять парусный ветряк в архив технических достижений человечества. Для переносного, перевозного, походного, аварийного варианта парусный ветряк - достаточно достойная конструкция. В собранном варианте он представляет собой упаковку не больше, чем палатка. Паруса свернуты, мачты сложены. Даже 2-х метровый парусный ветряк на ветре в 5 метров/сек даст верных 25-40 Ватт энергии, чего с лихвой хватит для зарядка аккумуляторов и связной и навигационной аппаратуры, да и для незамысловатой системы освещения на мощных светодиодах хватит.

Невысокая по определению мощность парусного ветряка наводит на мысль о применении в качестве генератора шагового двигателя аналогичной мощности (30-40 Ватт). Ему тоже не требуются высокие обороты, 200-300 в минуту вполне хватит. Что идеально согласуется с частотой оборотов ветряка. Ведь он при быстроходности 1,5, будет выдавать эти 200 оборотов уже при ветре 4-5 метров в секунду. Используя готовый шаговый двигатель вы тем самым избавите себя от достаточно серьезной мороки по изготовлению электрогенератора. Поскольку изначально подразумевается наличие редуктора или мультипликатора, то легко можно согласовать обороты парусного ветряка и генератора.

Если сделать вариант с жесткими (пластиковыми парусами), то можно будет несколько увеличить быстроходность, правда за счет некоторого снижения мобильности. В разобранном виде ветряк будет занимать больше места.

Поэтому если ваши амбиции по запряганию ветра в свою телегу ограничиваются мощностью в пару-тройку десятков Ватт для зарядки небольших и средних аккумуляторов, (до 100 А.ч), организацией простого освещения с помощью инвертора до 220 вольт и энергосберегающих ламп, то парусный ветряк - весьма и весьма достойный вариант. Это будет пусть и не самый эффективный в плане использования энергии ветра, но очень бюджетный и быстро окупаемый вариант. 2-3 метровый ветряк будет выдавать вам до 1 КВт энергии в сутки.

В качестве походного, парусный ветряк будет дешевле самого дешевого бензинового электрогенератора и окупит себя изначально.

Стационарные парусные ветряки строят изначально большие именно из-за их невысокого КИЭВ. Не менее 5-6 метров диаметром, иначе нет смысла. Такой ветряк уже стабильно будет выдавать до 2-3 Квт энергии в сутки. И при рачительном ее использовании, их можно превратить в 3-5 Квт осветительной энергии (например для освещения теплицы или парника). А при использовании теплового насоса - в 5-6 Квт тепловой энергии, что позволит отапливать небольшой садовый домик в 20-30 кв. метров и серьезно экономить топливо.

Поэтому парусный ветряк, несмотря на свою архаичность конструкции остается способом использования ветра все еще заслуживающим внимания. Особенно в зоне слабых ветров.

Верхний предел рабочей скорости ветра у парусного ветряка не более 10-12 метров в секунду. И то у самых надежных ветряков. Поэтому при конструировании парусного ветряка следует серьезно озаботиться штормовой защитой. Например сделать «ломающиеся» мачты, на основе конструкции антенны Куликова, или придумать устройство расслабляющие шкоты, что бы превратить паруса во флаги, или складывать мачты при помощи тросов –растяжек, и т.д. опубликовано



Похожие статьи