Какие математические модели относятся к наиболее сложным. Лекция: Математическое моделирование

Сформулируем основные требования, предъявляемые к модели М процесса функционирования системы (объекта):

1) полнота модели должна предоставлять пользователю возможность получения необходимого набора оценок характеристик системы с требуемой точностью и достоверностью.

2) гибкость модели должна давать возможность воспроизведения различных ситуаций при варьировании структуры, параметров системы.

3) длительность разработки модели должна быть по возможности минимальной.

4) структура модели должна быть блочной, т.е. допускать возможность замены, добавления и исключения некоторых частей без переделки всей модели.

5) программные и технические средства должны обеспечивать эффективную по быстродействию и памяти программную реализацию модели.

1.3. Классификация математических моделей

В качестве основания для классификации математических моделей очень удобно выбрать такой явный признак, как тип моделируемого объекта. По типу исследуемого объекта различают математические модели технических устройств, технологических процессов, производств, предприятий.

Каждую из выделенных групп моделей в свою очередь можно разбить на ряд групп и подгрупп в зависимости от принятых для них классификационных признаков. В качестве последних наиболее часто используют факторы времени (непрерывные и дискретные модели), описываемый в модели режим работы объекта (динамический и статический), вид функциональной связи (линейная или нелинейная).

Например, на этой основе можно классифицировать математические модели технических объектов и устройств, выделив восемь групп моделей

В зависимости от характера отображаемых свойств математические модели делятся на функциональные и структурные. Функциональные модели отображают процессы, протекающие в объекте. Чаще всего эти модели задаются в виде систем уравнений.

Структурные модели применяются в задачах проектирования, связанных с описанием облика изделия, в задачах конструкторского проектирования. Это модели, отображающие геометрические свойства объекта (элементы, из которых состоит объект и характер связей между элементами). Эти математические модели имеют форму матриц, графов и т.п.

По способу построения математических моделей выделяются класс формальных (экспериментально-статистических) математических моделей и класс неформальных (аналитических) моделей.

Формальные математические модели создаются по результатам экспериментальных наблюдений за некоторым объектом-аналогом. Уравнения связи Y=F(X, Z) носят условный характер и не отражают внутренней структуры, конструктивных и технологических особенностей объекта.

Математические модели технических объектов и устройств

Непрерывные

Дискретные

во времени

во времени

Y=f(k, t), k=1,2,

Стохастические

Детерминированные

Рис.1.4. Классификация математических моделей

Неформальные модели создаются на основе универсальных уравнений сохранения (массы, энергии, импульса). Уравнения связи Y=F(X, Z) отражают общие законы сохранения, элементарные физико-химические процессы, протекающие в объекте.

По виду функциональной связи между входными и выходными параметрами (F(X, Z)) принято выделять линейные и нелинейные математические модели.

Задачи исследования объекта могут ограничиваться определенным режимом его функционирования. В соответствии с этим признаком выделяются модели статики и динамики.

Математическая модель динамики описывает переходный режим работы объекта и отображает изменение во времени выходных координат (Y(t)) объекта.

При разработке математической модели динамики детерминированного объекта используют различные виды дифференциальных уравнений.

1. Для описания модели динамики стационарного объекта с сосредоточенными координатами применяют обыкновенные дифференциальные уравнения или передаточные функции:

2. Для описания модели динамики стационарного объекта с распреде дифференциальные уравнения в частных производных:

∂Y

∂Y

Y(t,z),X(t,z),B) = 0 .

∂t

∂z

3. Для описания модели динамики нестационарного объекта с сосредоточенными координатами применяют обыкновенные дифференциальные уравнения или передаточные функции с переменными во времени коэффициентами:

Y(t), X(t),B(t)) = 0

или, например, W =

T(t)p + 1

4. Для описания модели динамики нестационарного объекта с распределенными координатами применяют дифференциальные уравнения в частных производных с переменными во времени коэффициентами:

∂Y

∂Y

Y(t,z),X(t,z),B(t)) = 0 .

∂t

∂z

Математическая модель статики описывает установившийся режим работы объекта (dY dt = 0 ) и отображает зависимость выходных координат объ-

екта (Y) от его входных координат (X).

При разработке математической модели статики детерминированного объекта используют различные виды конечных и дифференциальных уравнений.

5. Для описания модели статики стационарного объекта с сосредоточенными координатами применяют алгебраические (конечные) уравнения

f (Y , X , B ) = 0 .

f (Y , X , B) = 0.

Для описания модели статики

стационарного объекта

с распреде-

ленными координатами применяют

обыкновенные дифференциальные

уравнения:

Y (z ), X (z ), B ) = 0 .

Для описания модели статики

нестационарного объекта

с сосредо-

точенными координатами применяют конечные уравнения с переменными во времени коэффициентами:

f (Y , X , B (t )) = 0 .

8. Для описания модели статики

нестационарного объекта

с распреде-

ленными координатами применяют

дифференциальные уравнения с пере-

менными во времени коэффициентами:

f (∂ Y ,Y (z ), X (z ), B (t )) = 0 .

∂z

1.4. Понятие об адекватности математической модели

Пусть математическая модель задана в виде уравнения статики: (1.12)

Имеется объект (оригинал), на вход которого можно подать некоторое возмущение, установив новое значение вектора входных координат X = X * . Используя эти значения в уравнении (1.12), можно найти расчет-

ные значения вектора выходных координат Y рас (X * , B * ) . Сравнивая этот

вектор с соответствующими значениями, полученными в ходе эксперимента на объекте (оригинале), можно сделать вывод о степени близости модели к оригиналу (рис.1.5).

между Y рас (X * , B * ) и вектором Y эсп (X * ) , полученном на объекте при X = X * , меньше заданного числа, т.е.

ρ [ Y (X * , B* ), Y (X * ) ] < .

где ρ – функция невязки, определяет формулу для расчета расстояния;

– допустимая ошибка, характеризует степень адекватности модели.

Рис.1.5. Определение адекватности модели объекта

Адекватность модели зависит от степени полноты и достоверности сведений об исследуемом объекте, степени детализации модели, точности идентификации параметров модели, уровня подготовки и опыта исследователя.

1.5. Общая характеристика методов составления математических моделей

Анализ любого метода разработки математической модели позволяет выделить три необходимых этапа в решении этой задачи:

определение структуры функции связи f входных X и выходных Y координат объекта (формирование в общем виде уравнения математической модели);

определение параметров модели (коэффициентов уравнения математической модели) B. Задача идентификации вектора параметров В;

проверка адекватности математической модели.

В зависимости от способов решения задач первого и второго этапов различают три группы методов составления математических моделей: формальные (экспериментально-статистические методы), неформальные (аналитические методы) и комбинированные методы.

Формальные (экспериментально-статистические) методы применяются для построения математических моделей стационарных и нестационарных объектов, только с сосредоточенными координатами. Главными особенностями этих методов являются:

одинаковые с точностью до В формальные математические модели

могут описывать разные БТС; не требуется глубокое изучение особенностей моделируемого объекта;

точность математической модели достигается путем повышения размерности вектора параметров (коэффициентов) В.

В основе формальных методов построения математических моделей лежит кибернетическое представление об объекте моделирования, как о некотором черном ящике (рис.1.6).

Рис.1.6. Блок - схема объекта моделирования

В рамках данного понятия предполагается, что:

- внутренняя структура объекта неизвестна,

- доступны для наблюдения все входы (X) и выходы (Y) объекта,

- на вход объекта можно подавать различные возмущения,

- на основе наблюдений за X и Y можно составить уравнения связи, которые в дальнейшем будут рассматриваться как уравнения математической модели объекта.

Одним из главных достоинств этой группы методов является их универсальность и полная инвариантность к исследуемой предметной области. Их использование предполагает наличие у разработчика значительного объема экспериментальных данных: результатов наблюдений (Х и Y) за объектом. Очевидно, экспериментально-статистические методы нельзя применять для построения новых объектов, объектов, находящихся в стадии проектирования, не существующих в реальности.

Особенности неформальных (аналитических) методов составления математических моделей включают факты:

Функцию связи f входных X и выходных Y координат выводят на основе анализа элементарных физико-химических процессов, протекающих в объекте моделирования;

В составляющие вектора В параметров модели (коэффициенты уравнений) входят основные конструктивные и технологические характеристики моделируемого объекта;

Полученные на основе этих методов математические модели, как правило, являются нелинейными.

Основным достоинством аналитических методов построения моделей

является возможность детального (полного) анализа характеристик объекта в широком диапазоне изменения исходных данных. Однако аналитический подход к разработке математических моделей возможен только при рассмотрении сравнительно простых объектов, в других случаях он требует значительных упрощений (допущений) описаний реальных процессов, что приводит к снижению точности моделирования. Аналитические методы разработки математических моделей не требуют постановки экспериментов и могут применяться при проведении предпроектных исследований, а также при проектировании нового объекта.

Комбинированные методы представляют собой интеграцию аналитического и формально-статистического подходов к разработке математических моделей. Например, формирование в общем виде уравнений математической модели осуществляется на основе универсальных законов сохранения (аналитический подход), а определение параметров модели выполняется экспериментально-статистическими методами. При таком подходе ослабляется главный недостаток формальных методов построения моделей: отсутствие в структуре уравнений отображения элементарных физи- ко-химических процессов, протекающих в исследуемом объекте.

Контрольные вопросы

1. Какие виды моделирования вы знаете?

2. Какой принцип лежит в основе физического моделирования?

3. Какой принцип лежит в основе математического моделирования?

4. В каком виде может быть представлена физическая модель?

5. Основные достоинство и недостатки физического моделирования.

6. В каком виде может быть представлена математическая модель?

7. Достоинства и недостатки математического моделирования.

8. Характеристические признаки имитационного моделирования.

9. Какие классификационные признаки используются для выделения отдельных классов математических моделей?

10. Что описывает математическая модель динамики?

11. Какие классы математических моделей динамики вы знаете?

12. Что описывает математическая модель статики?

13. Какие классы математических моделей статики вы знаете?

14. Перечислите этапы разработки математической модели объекта.

15. Как вы понимаете утверждение "Модель адекватна объекту"?

16. Назовите группы методов составления математических моделей.

17. Какие особенности формальных методов построения математических моделей вы знаете?

18. Особенности аналитических методов построения моделей.

1. Экономико-математические модели классифицируются по разным основаниям.

По целевому назначению они делятся на:

Теоретико-аналитические – в исследованиях общих свойств и закономерностей;

Прикладные – при решении конкретных экономических задач (модели экономического анализа, прогнозирования, управления).

Экономико-математические модели могут быть использованы при исследовании разных сторон производства и его отдельных частей.

По исследуемым экономическим процессами содержательной проблематике экономико-математические модели делятся на:

Модели производства в целом и его подсистем – отраслей, регионов и т. д.;

Комплексы моделей производства, потребления, формирования и распределения доходов, трудовых ресурсов, ценообразования, финансовых связей и т. д.

В соответствии с общей классификацией математических моделей они подразделяются на:

Функциональные;

Структурные;

Структурно-функциональные.

Применение в исследованиях на хозяйственном уровне структурных моделей обосновано взаимосвязью подсистем. Типичными в данном случае являются модели межотраслевых связей.

Функциональные модели широко применяются в сфере экономическогорегулирования. Типичными в данном случае являются модели поведения потребителей в условиях товарно-денежных отношений.

Один и тот же объект может быть представлен в виде и структурной, и функциональной модели одновременно. Так, например, для планирования отдельной отраслевой системы используется структурная модель, а на хозяйственном уровне – функциональная.

2. Различия между моделями дескриптивными и нормативными выявляются при рассмотрении их структуры и характера использования.

Дескриптивные модели дают ответ на вопрос: «Как это происходит?» или «Как это вероятнее всего может дальше развиваться?», то есть объясняют наблюдаемые факты или прогнозируют вероятность каких-либо фактов.

Цель дескриптивного подхода – эмпирическое выявление различных зависимостей в экономике. Это могут быть установление статистических закономерностей экономического поведения социальных групп, изучение вероятных путей развития каких-либо процессов при неизменных условиях или без внешних воздействий и другие исследования. Примером здесь может быть модель покупательского спроса, построенная на основе обработки статистических данных.

Нормативные модели признаны ответить на вопрос: «Как это должно быть?», то есть предполагают целенаправленную деятельность. Типичным примером является модель оптимального планирования.

Экономико-математическая модель может быть и дескриптивной, и нормативной. Так, модель межотраслевого баланса дескриптивна, если она используется для анализа пропорций прошлого периода, и нормативна при расчете сбалансированных вариантов развития экономики.

3. Признаки дескриптивных и нормативных моделей сочетаются, если нормативная модель сложной структуры объединяет отдельные блоки, которые являются частными дескриптивными моделями. Так, межотраслевая модель может включать функции покупательского спроса, отражающие поведение потребителей при изменении доходов.

Дескриптивный подход широко распространен в имитационном моделировании.

По характеру обнаружения причинно-следственных связей различают модели жестко детерминистские и модели, включающие элементы случайности и неопределенности. Необходимо различать неопределенность, основанную на законе теории вероятности, и неопределенность, выходящую за рамки применения этого закона. Второй тип неопределенности вызывает большие проблемы при моделировании.

4. По способам отражения фактора времени экономико-математические модели делятся на:

Статические;

Динамические.

В статических моделях все закономерности экономики относятся к одному моменту или периоду времени.

Динамические модели характеризуют изменения во времени.

По длительности периода времени различаются модели краткосрочного(до года), среднесрочного (до 5 лет), долгосрочного (5 лет и более) прогнозирования и планирования. Течение времени в экономико-математических моделях может изменяться либо непрерывно, либо дискретно.

Модели экономических явлений различаются по форме математических зависимостей.

Наиболее удобен для анализа и вычислений класс линейных моделей. Но существуют следующие зависимости в экономике, которые носят нелинейный характер:

Эффективность использования ресурсов при увеличении производства;

Изменение спроса и потребления населения при увеличении производства;

Изменение спроса и потребления населения при росте доходов и т. п.

По соотношению экзогенных и эндогенных переменных, включаемых в модель, они могут разделяться на открытые и закрытые.

Модель должна содержать хотя бы одну эндогенную переменную, поэтому абсолютно открытых моделей не существует. Исключительно редки модели, не включающие экзогенных переменных (закрытые), – их построение требует полного абстрагирования от «среды», то есть серьезного огрубления реальных экономических систем, всегда имеющих внешние связи.

В основном модели различаются по степени открытости (закрытости).

Для моделей хозяйственного уровня важно деление на. агрегированные и детализированные.

В зависимости от того, включают ли хозяйственные модели пространственные факторы и условия или не включают, различают модели пространственныеиточечные.

С ростом достижений экономико-математических исследований проблема классификации применяемых моделей усложняется. Наряду с появлением новых типов моделей (особенно смешанных типов) и новых оснований для их классификации осуществляется процесс интеграции моделей разных типов в более сложные модельные конструкции.

КОНСПЕКТ ЛЕКЦИЙ

По курсу

«Математическое моделирование машин и транспортных систем»


В курсе рассмотрены вопросы, связанные с математическим моделированием, с формой и принципом представления математических моделей. Рассмотрены численные методы решения одномерных нелинейных систем. Освещаются вопросы компьютерного моделирования и вычислительного эксперимента. Рассмотрены методы обработки данных, полученных в результате научных или производственных экспериментов; исследования различных процессов, выявления закономерностей в поведении объектов, процессов и систем. Рассмотрены методы интерполирования и аппроксимации опытных данных. Рассмотрены вопросы, связанные с компьютерным моделированием и решением нелинейных динамических систем. В частности, рассмотрены методы численного интегрирования и решения обыкновенных дифференциальных уравнений первого, второго и более высоких порядков.


Лекция: Математическое моделирование. Форма и принципы представления математических моделей

В лекции рассмотрены общие вопросы математического моделирования. Приведена классификация математических моделей.

ЭВМ прочно вошла в нашу жизнь, и практически нет такой области человеческой деятельности, где не применялась бы ЭВМ. ЭВМ сейчас широко используется в процессе создания и исследования новых машин, новых технологических процессов и поиске их оптимальных вариантов; при решении экономических задач, при решении задач планирования и управления производством на различных уровнях. Создание же крупных объектов в ракетотехнике, авиастроении, судостроении, а также проектирование плотин, мостов, и др. вообще невозможно без применения ЭВМ.

Для использования ЭВМ при решении прикладных задач, прежде всего прикладная задача должна быть "переведена" на формальный математический язык, т.е. для реального объекта, процесса или системы должна быть построена его математическая модель.

Слово "Модель" происходит от латинского modus (копия, образ, очертание). Моделирование - это замещение некоторого объекта А другим объектом Б. Замещаемый объект А называется оригиналом или объектом моделирования, а замещающий Б - моделью. Другими словами, модель - это объект-заменитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.

Целью моделирования являются получение, обработка, представление и использование информации об объектах, которые взаимодействуют между собой и внешней средой; а модель здесь выступает как средство познания свойств и закономерности поведения объекта.

Моделирование широко используются в различных сферах человеческой деятельности, особенно в сферах проектирования и управления, где особенными являются процессы принятия эффективных решений на основе получаемой информации.


Модель всегда строится с определенной целью, которая оказывает влияние на то, какие свойства объективного явления оказываются существенными, а какие - нет. Модель представляет собой как бы проекцию объективной реальности под определенным углом зрения. Иногда в зависимости от целей можно получить ряд проекций объективной реальности, вступающих в противоречие. Это характерно, как правило, для сложных систем, у которых каждая проекция выделяет существенное для определенной цели из множества несущественного.

Теорией моделирования является раздел науки, изучающий способы исследования свойств объектов-оригиналов, на основе замещения их другими объектами-моделями. В основе теории моделирования лежит теория подобия. При моделировании абсолютное подобие не имеет места и лишь стремится к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования объекта. Абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же.

Все модели можно разделить на два класса:

1. вещественные,

2. идеальные.

В свою очередь вещественные модели можно разделить на:

1. натурные,

2. физические,

3. математические.

Идеальные модели можно разделить на:

1. наглядные,

2. знаковые,

3. математические.

Вещественные натурные модели - это реальные объекты, процессы и системы, над которыми выполняются эксперименты научные, технические и производственные.

Вещественные физические модели - это макеты, муляжи, воспроизводящие физические свойства оригиналов (кинематические, динамические, гидравлические, тепловые, электрические, световые модели).

Вещественные математические - это аналоговые, структурные, геометрические, графические, цифровые и кибернетические модели.

Идеальные наглядные модели - это схемы, карты, чертежи, графики, графы, аналоги, структурные и геометрические модели.

Идеальные знаковые модели - это символы, алфавит, языки программирования, упорядоченная запись, топологическая запись, сетевое представление.

Идеальные математические модели - это аналитические, функциональные, имитационные, комбинированные модели.

В приведенной классификации некоторые модели имеют двойное толкование (например - аналоговые). Все модели, кроме натурных, можно объединить в один класс мысленных моделей, т.к. они являются продуктом абстрактного мышления человека.

Остановимся на одном из наиболее универсальных видов моделирования - математическом, ставящим в соответствие моделируемому физическому процессу систему математических соотношений, решение которой позволяет получить ответ на вопрос о поведении объекта без создания физической модели, часто оказывающейся дорогостоящей и неэффективной.

Математическое моделирование - это средство изучения реального объекта, процесса или системы путем их замены математической моделью, более удобной для экспериментального исследования с помощью ЭВМ.

Математическая модель является приближенным представлением реальных объектов, процессов или систем, выраженным в математических терминах и сохраняющим существенные черты оригинала. Математические модели в количественной форме, с помощью логико-математических конструкций, описывают основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи.

В общем случае математическая модель реального объекта, процесса или системы представляется в виде системы функционалов

Ф i (X,Y,Z,t)=0,

где X - вектор входных переменных, X= t ,

Y - вектор выходных переменных, Y= t ,

Z - вектор внешних воздействий, Z= t ,

t - координата времени.

Построение математической модели заключается в определении связей между теми или иными процессами и явлениями, создании математического аппарата, позволяющего выразить количественно и качественно связь между теми или иными процессами и явлениями, между интересующими специалиста физическими величинами, и факторами, влияющими на конечный результат.

Обычно их оказывается настолько много, что ввести в модель всю их совокупность не удается. При построении математической модели перед исследованием возникает задача выявить и исключить из рассмотрения факторы, несущественно влияющие на конечный результат (математическая модель обычно включает значительно меньшее число факторов, чем в реальной действительности). На основе данных эксперимента выдвигаются гипотезы о связи между величинами, выражающими конечный результат, и факторами, введенными в математическую модель. Такая связь зачастую выражается системами дифференциальных уравнений в частных производных (например, в задачах механики твердого тела, жидкости и газа, теории фильтрации, теплопроводности, теории электростатического и электродинамического полей).

Конечной целью этого этапа является формулирование математической задачи, решение которой с необходимой точностью выражает результаты, интересующие специалиста.

Форма и принципы представления математической модели зависит от многих факторов.

По принципам построения математические модели разделяют на:

1. аналитические;

2. имитационные.

В аналитических моделях процессы функционирования реальных объектов, процессов или систем записываются в виде явных функциональных зависимостей.

Аналитическая модель разделяется на типы в зависимости от математической проблемы:

1. уравнения (алгебраические, трансцендентные, дифференциальные, интегральные),

2. аппроксимационные задачи (интерполяция, экстраполяция, численное интегрирование и дифференцирование),

3. задачи оптимизации,

4. стохастические проблемы.

Однако по мере усложнения объекта моделирования построение аналитической модели превращается в трудноразрешимую проблему. Тогда исследователь вынужден использовать имитационное моделирование.

В имитационном моделировании функционирование объектов, процессов или систем описывается набором алгоритмов. Алгоритмы имитируют реальные элементарные явления, составляющие процесс или систему с сохранением их логической структуры и последовательности протекания во времени. Имитационное моделирование позволяет по исходным данным получить сведения о состояниях процесса или системы в определенные моменты времени, однако прогнозирование поведения объектов, процессов или систем здесь затруднительно. Можно сказать, что имитационные модели - это проводимые на ЭВМ вычислительные эксперименты с математическими моделями, имитирующими поведение реальных объектов, процессов или систем.

В зависимости от характера исследуемых реальных процессов и систем математические модели могут быть:

1. детерминированные,

2. стохастические.

В детерминированных моделях предполагается отсутствие всяких случайных воздействий, элементы модели (переменные, математические связи) достаточно точно установленные, поведение системы можно точно определить. При построении детерминированных моделей чаще всего используются алгебраические уравнения, интегральные уравнения, матричная алгебра.

Стохастическая модель учитывает случайный характер процессов в исследуемых объектах и системах, который описывается методами теории вероятности и математической статистики.

По виду входной информации модели разделяются на:

1. непрерывные,

2. дискретные.

Если информация и параметры являются непрерывными, а математические связи устойчивы, то модель - непрерывная. И наоборот, если информация и параметры - дискретны, а связи неустойчивы, то и математическая модель - дискретная.

По поведению моделей во времени они разделяются на:

1. статические,

2. динамические.

Статические модели описывают поведение объекта, процесса или системы в какой-либо момент времени. Динамические модели отражают поведение объекта, процесса или системы во времени.

По степени соответствия между математической моделью и реальным объектом, процессом или системой математические модели разделяют на:

1. изоморфные (одинаковые по форме),

2. гомоморфные (разные по форме).

Модель называется изоморфной, если между нею и реальным объектом, процессом или системой существует полное поэлементное соответствие. Гомоморфной - если существует соответствие лишь между наиболее значительными составными частями объекта и модели.

В дальнейшем для краткого определения вида математической модели в приведенной классификации будем пользоваться следующими обозначениями:

Первая буква:

Д - детерминированная,

С - стохастическая.

Вторая буква:

Н - непрерывная,

Д - дискретная.

Третья буква:

А - аналитическая,

И - имитационная.

1. Отсутствует (точнее не учитывается) влияние случайных процессов, т.е. модель детерминированная (Д).

2. Информация и параметры - непрерывные, т.е. модель - непрерывная (Н),

3. Функционирование модели кривошипно-шатунного механизма описано в виде нелинейных трансцендентных уравнений, т.е. модель - аналитическая (А)

2. Лекция: Особенности построения математических моделей

В лекции описан процесс построения математической модели. Приведен словесный алгоритм процесса.

Для использования ЭВМ при решении прикладных задач прежде всего прикладная задача должна быть "переведена" на формальный математический язык, т.е. для реального объекта, процесса или системы должна быть построена его математическая модель.

Математические модели в количественной форме, с помощью логико-математических конструкций, описывают основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи.

Для построения математической модели необходимо:

1. тщательно проанализировать реальный объект или процесс;

2. выделить его наиболее существенные черты и свойства;

3. определить переменные, т.е. параметры, значения которых влияют на основные черты и свойства объекта;

4. описать зависимость основных свойств объекта, процесса или системы от значения переменных с помощью логико-математических соотношений (уравнения, равенства, неравенства, логико-математические конструкций);

5. выделить внутренние связи объекта, процесса или системы с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций;

6. определить внешние связи и описать их с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций.

Математическое моделирование, кроме исследования объекта, процесса или системы и составления их математического описания, также включает:

1. построение алгоритма, моделирующего поведение объекта, процесса или системы;

2. проверка адекватности модели и объекта, процесса или системы на основе вычислительного и натурного эксперимента;

3. корректировка модели;

4. использование модели.

Математическое описание исследуемых процессов и систем зависит от:

1. природы реального процесса или системы и составляется на основе законов физики, химии, механики, термодинамики, гидродинамики, электротехники, теории пластичности, теории упругости и т.д.

2. требуемой достоверности и точности изучения и исследования реальных процессов и систем.

На этапе выбора математической модели устанавливаются: линейность и нелинейность объекта, процесса или системы, динамичность или статичность, стационарность или нестационарность, а также степень детерминированности исследуемого объекта или процесса. При математическом моделировании сознательно отвлекаются от конкретной физической природы объектов, процессов или систем и, в основном, сосредотачиваются на изучении количественных зависимостей между величинами, описывающими эти процессы.

Математическая модель никогда не бывает полностью тождественна рассматриваемому объекту, процессу или системе. Основанная на упрощении, идеализации она является приближенным описанием объекта. Поэтому результаты, полученные при анализе модели, носят приближенный характер. Их точность определяется степенью адекватности (соответствия) модели и объекта.

Построение математической модели обычно начинается с построения и анализа простейшей, наиболее грубой математической модели рассматриваемого объекта, процесса или системы. В дальнейшем, в случае необходимости, модель уточняется, делается ее соответствие объекту более полным.

Возьмем простой пример. Нужно определить площадь поверхности письменного стола. Обычно для этого измеряют его длину и ширину, а затем перемножают полученные числа. Такая элементарная процедура фактически обозначает следующее: реальный объект (поверхность стола) заменяется абстрактной математической моделью – прямоугольником. Прямоугольнику приписываются размеры, полученные в результате измерения длины и ширины поверхности стола, и площадь такого прямоугольника приближенно принимается за искомую площадь стола.

Однако модель прямоугольника для письменного стола – это простейшая, наиболее грубая модель. При более серьезном подходе к задаче прежде, чем воспользоваться для определения площади стола моделью прямоугольника, эту модель нужно проверить. Проверки можно осуществить следующим образом: измерить длины противоположных сторон стола, а также длины его диагоналей и сравнить их между собой. Если, с требуемой степенью точности, длины противоположных сторон и длины диагоналей попарно равны между собой, то поверхность стола действительно можно рассматривать как прямоугольник. В противном случае модель прямоугольника придется отвергнуть и заменить моделью четырехугольника общего вида. При более высоком требовании к точности может возникнуть необходимость пойти в уточнении модели еще дальше, например, учесть закругления углов стола.

С помощью этого простого примера было показано, что математическая модель не определяется однозначно исследуемым объектом, процессом или системой. Для одного и того же стола мы можем принять либо модель прямоугольника, либо более сложную модель четырехугольника общего вида, либо четырехугольника с закругленными углами. Выбор той или иной модели определяется требованием точности. С повышением точности модель приходится усложнять, учитывая новые и новые особенности изучаемого объекта, процесса или системы.

Рассмотрим другой пример: исследование движения кривошипно-шатунного механизма (Рис. 2.1).

Рис. 2.1.

Для кинематического анализа этого механизма, прежде всего, необходимо построить его кинематическую модель. Для этого:

1. Заменяем механизм его кинематической схемой, где все звенья заменены жесткими связями;

2. Пользуясь этой схемой, мы выводим уравнение движения механизма;

3. Дифференцируя последнее, получаем уравнения скоростей и ускорения, которые представляют собой дифференциальные уравнения 1-го и 2-го порядка.

Запишем эти уравнения:

где С 0 – крайнее правое положение ползуна С:

r – радиус кривошипа AB;

l – длина шатуна BC;

– угол поворота кривошипа;

Полученные трансцендентные уравнения представляют математическую модель движения плоского аксиального кривошипно-шатунного механизма, основанную на следующих упрощающих предположениях:

1. нас не интересовали конструктивные формы и расположение масс, входящих в механизм тел, и все тела механизма мы заменили отрезками прямых. На самом деле, все звенья механизма имеют массу и довольно сложную форму. Например, шатун – это сложное сборное соединение, форма и размеры которого, конечно, будут влиять на движение механизма;

2. при построении математической модели движения рассматриваемого механизма мы также не учитывали упругость входящих в механизм тел, т.е. все звенья рассматривали как абстрактные абсолютно жесткие тела. В действительности же, все входящие в механизм тела – упругие тела. Они при движении механизма будут как-то деформироваться, в них могут даже возникнуть упругие колебания. Это все, конечно, также будет влиять на движение механизма;

3. мы не учитывали погрешность изготовления звеньев, зазоры в кинематических парах A, B, C и т.д.

Таким образом, важно еще раз подчеркнуть, что, чем выше требования к точности результатов решения задачи, тем больше необходимость учитывать при построении математической модели особенности изучаемого объекта, процесса или системы. Однако, здесь важно во время остановиться, так как сложная математическая модель может превратиться в трудно разрешимую задачу.

Наиболее просто строится модель, когда хорошо известны законы, определяющие поведение и свойства объекта, процесса или системы, и имеется большой практический опыт их применения.

Более сложная ситуация возникает тогда, когда наши знания об изучаемом объекте, процессе или системе недостаточны. В этом случае при построении математической модели приходится делать дополнительные предположения, которые носят характер гипотез, такая модель называется гипотетической. Выводы, полученные в результате исследования такой гипотетической модели, носят условный характер. Для проверки выводов необходимо сопоставить результаты исследования модели на ЭВМ с результатами натурного эксперимента. Таким образом, вопрос применимости некоторой математической модели к изучению рассматриваемого объекта, процесса или системы не является математическим вопросом и не может быть решен математическими методами.

Основным критерием истинности является эксперимент, практика в самом широком смысле этого слова.

Построение математической модели в прикладных задачах – один из наиболее сложных и ответственных этапов работы. Опыт показывает, что во многих случаях правильно выбрать модель – значит решить проблему более, чем наполовину. Трудность данного этапа состоит в том, что он требует соединения математических и специальных знаний. Поэтому очень важно, чтобы при решении прикладных задач математики обладали специальными знаниями об объекте, а их партнеры, специалисты, – определенной математической культурой, опытом исследования в своей области, знанием ЭВМ и программирования.

Лекция 3. Компьютерное моделирование и вычислительный эксперимент. Решение математических моделей

Компьютерное моделирование как новый метод научных исследований основывается на:

1. построении математических моделей для описания изучаемых процессов;

2. использовании новейших вычислительных машин, обладающих высоким быстродействием (миллионы операций в секунду) и способных вести диалог с человеком.

Суть компьютерного моделирования состоит в следующем: на основе математической модели с помощью ЭВМ проводится серия вычислительных экспериментов, т.е. исследуются свойства объектов или процессов, находятся их оптимальные параметры и режимы работы, уточняется модель. Например, располагая уравнением, описывающим протекание того или иного процесса, можно изменяя его коэффициенты, начальные и граничные условия, исследовать, как при этом будет вести себя объект. Более того, можно спрогнозировать поведение объекта в различных условиях.

Вычислительный эксперимент позволяет заменить дорогостоящий натурный эксперимент расчетами на ЭВМ. Он позволяет в короткие сроки и без значительных материальных затрат осуществить исследование большого числа вариантов проектируемого объекта или процесса для различных режимов его эксплуатации, что значительно сокращает сроки разработки сложных систем и их внедрение в производство.

Компьютерное моделирование и вычислительный эксперимент как новый метод научного исследования заставляет совершенствовать математический аппарат, используемый при построении математических моделей, позволяет, используя математические методы, уточнять, усложнять математические модели. Наиболее перспективным для проведения вычислительного эксперимента является его использование для решения крупных научно-технических и социально-экономических проблем современности (проектирование реакторов для атомных электростанций, проектирование плотин и гидроэлектростанций, магнитогидродинамических преобразователей энергии, и в области экономики – составление сбалансированного плана для отрасли, региона, для страны и др.).

В некоторых процессах, где натурный эксперимент опасен для жизни и здоровья людей, вычислительный эксперимент является единственно возможным (термоядерный синтез, освоение космического пространства, проектирование и исследование химических и других производств).

Для проверки адекватности математической модели и реального объекта, процесса или системы результаты исследований на ЭВМ сравниваются с результатами эксперимента на опытном натурном образце. Результаты проверки используются для корректировки математической модели или решается вопрос о применимости построенной математической модели к проектированию либо исследованию заданных объектов, процессов или систем.

В заключение подчеркнем еще раз, что компьютерное моделирование и вычислительный эксперимент позволяют свести исследование "нематематического" объекта к решению математической задачи. Этим самым открывается возможность использования для его изучения хорошо разработанного математического аппарата в сочетании с мощной вычислительной техникой. На этом основано применение математики и ЭВМ для познания законов реального мира и их использования на практике.

В задачах проектирования или исследования поведения реальных объектов, процессов или систем математические модели, как правило, нелинейны, т.к. они должны отражать реальные физические нелинейные процессы, протекающие в них. При этом параметры (переменные) этих процессов связаны между собой физическими нелинейными законами. Поэтому в задачах проектирования или исследования поведения реальных объектов, процессов или систем чаще всего используются математические модели типа ДНА.

Согласно классификации приведенной в лекции 1:

Д – модель детерминированная, отсутствует (точнее не учитывается) влияние случайных процессов.

Н – модель непрерывная, информация и параметры непрерывны.

А – модель аналитическая, функционирование модели описывается в виде уравнений (линейных, нелинейных, систем уравнений, дифференциальных и интегральных уравнений).

Итак, мы построили математическую модель рассматриваемого объекта, процесса или системы, т.е. представили прикладную задачу как математическую. После этого наступает второй этап решения прикладной задачи – поиск или разработка метода решения сформулированной математической задачи. Метод должен быть удобным для его реализации на ЭВМ, обеспечивать необходимое качество решения.

Все методы решения математических задач можно разделить на 2 группы:

1. точные методы решения задач;

2. численные методы решения задач.

В точных методах решения математических задач ответ удается получить в виде формул.

Например, вычисление корней квадратного уравнения:

или, например, вычисление производных функций:

или вычисление определенного интеграла:

Однако, подставляя числа в формулу в виде конечных десятичных дробей, мы все равно получаем приближенные значения результата.

Для большинства задач, встречающихся на практике, точные методы решения или неизвестны, или дают очень громоздкие формулы. Однако, они не всегда являются необходимыми. Прикладную задачу можно считать практически решенной, если мы сумеем ее решить с нужной степенью точности.

Для решения таких задач разработаны численные методы, в которых решение сложных математических задач сводится к последовательному выполнению большого числа простых арифметических операций. Непосредственная разработка численных методов относится к вычислительной математике.

Примером численного метода является метод прямоугольников для приближенного интегрирования, не требующий вычисления первообразной для подынтегральной функции. Вместо интеграла вычисляется конечная квадратурная сумма:

x 1 =a – нижний предел интегрирования;

x n+1 =b – верхний предел интегрирования;

n – число отрезков, на которые разбит интервал интегрирования (a,b);

– длина элементарного отрезка;

f(x i) – значение подынтегральной функции на концах элементарных отрезков интегрирования.

Чем больше число отрезков n, на которые разбит интервал интегрирования, тем ближе приближенное решение к истинному, т.е. тем точнее результат.

Таким образом, в прикладных задачах и при применении точных методов решения, и при применении численных методов решения результаты вычислений носят приближенный характер. Важно только добиться того, чтобы ошибки укладывались в рамки требуемой точности.

Численные методы решения математических задач известны давно, еще до появления ЭВМ, но ими пользовались редко и только в сравнительно простых случаях в силу чрезвычайной трудоемкости вычислений. Широкое применение численных методов стало возможным благодаря ЭВМ.

Моделирование как метод разработки управленческого решения используется с середины XX века. Первые модели базировались на нормативных теориях и назывались нормативными. В них описывается стратегия поведения при выработке решения, ориентирующая на заданный критерий. Примером нормативных моделей являются:

Модели принятия статистических решений с использованием теории вероятности и математической статистики;

Инновационные игры как вариант нормативной модели поведения в условиях конфликта, наличия разноречивых мнений по проблемам нововведения;

Модели разработки решений на основе теории массового обслуживания, содержащие нормативные критерии при решении конкретных задач.

Однако нормативные модели не учитывают при принятии решений реального поведения человека, за которым остается выбор окончательного варианта. Этот "недостаток" в определенной мере компенсируют дескриптивные модели разработки решений, основанные на теории полезности, теории риска.

В настоящее время выделяется три основных подхода к построению моделей процесса разработки решений (математическому моделированию),основанных на:

1) теории статистических решений;

2) теории полезности;

3) теории игр.

Наиболее разработаны модели на основе теории статистических решений. В них считаются заданными:

Возможное распределение изучаемого случайного процесса;

Пространство возможных окончательных решений;

Стоимость вариантов решений;

Функция возможного убытка для каждого решения, соответствующего определенному состоянию внешней среды.

В общем виде можно констатировать, что решения принимаются, исходя из максимума прибыли или минимума потерь. В связи с этим вводится понятие риска, по величине которого судят о ценности решения. В этой теории рассматривается ряд возможных критериев оптимальности принимаемых решений. Так, решение, минимизирующее максимальный риск (байесовское решение), описывается как минимаксное решение. Статистическая теория решения применяется при выборе решений в условиях неопределенности внешней среды.

Второе направление математического моделирования связано с использованием теории полезности, основанной на индивидуальных предпочтениях, субъективной оценке вероятно-стей наступления событий внешней среды.

Третье направление моделей разработки решений основано на использовании теории игр. Данная теория применяется в условиях конфликтных ситуаций либо при принятии коллективных (совместных) решений. Основополагающим является выбор отправной точки (гарантирующего решения), с которой начинается совместная выработка лучшего решения. Основной принцип этой теории - минимакс. Схема теории игр описывает принципы принятия решений для широкого класса практических ситуаций инновационного характера. Игра возможна с любым числом участников и различной степенью их информированности. Формализации подвергаются лишь правила игры, а не поведение игроков.


Приведенные теории и подходы к моделированию процесса разработки решений отражают определенные его стороны:

статистическая теория решений - неопределенность среды, выбор, риск;

теория игр - некоторые характеристики поведения человека в условиях взаимодействия с другими людьми и со средой;

теория полезности - психологические представления о потребностях человека и его мотивации.

Разновидностью разработки решений являются эвристические модели. Впервые авторы Саймон и Ньюэл использовали термин "эвристический" (греческое "эурискеин" - делаю открытие) для характеристики особого подхода к решению задач и выбору решений. Основу эвристических моделей составляют логика и здравый смысл, основанные на имеющемся опыте. Такие модели используются в ситуациях, когда невозможно применение формальных аналитических методов. Сущность эвристических методов состоит в преобразовании одной сложной задачи в совокупность простых, поддающихся изучению математическими способами. Эвристическими моделями не решаются задачи оптимизации решений, но оценивается относительная пригодность конкретных стратегий с определенными ограничениями. На основе построения модели логических связей в ходе рассуждений ЛПР может решаться широкий класс задач.

Эвристические модели используются при выборе решений для разрешения ситуаций кратковременных и повторяющихся, а также сложных и повторяющихся без надежды на использование при этом математического аппарата.

Практическое применение эвристического подхода к моделированию процесса разработки и принятия управленческих решений предполагает наличие у ЛПР познавательных способностей и склонностей к обобщениям и выводам.

Принятие решений на психологическом уровне не является изолированным процессом. Оно включено в контекст реальной деятельности человека. При построении моделей принятия решений важно знать, как развертываются процессы, предшествующие ему и следующие за ним. Необходимо исследовать внешнюю и внутреннюю среду, включая поиск, выделение, классификацию и обобщение информации о среде, сформировать альтернативы и сделать выбор.

Существует большое разнообразие математических моделей, отражающих реальные процессы, протекающие в экономической жизни предприятия. Их можно классифицировать по разным признакам (рис. 11).

Следует отметить, что вопрос о классификации моделей в теории принятия решений продолжает оставаться спорным. Краткая характеристика и направление использования конкретных моделей сводятся к следующему.

В моделях могут отражаться интересы участников экономического процесса. Если они (интересы) одинаковы (хотя бы при нескольких действующих лицах), то модели называются моделями с одним участником: если интересы участников расходятся - то игровыми моделями. В рыночной экономике игровые модели имеют значительное распространение.

Если в моделях отсутствует фактор времени, рассматривается процесс в конкретный момент или на фиксированном отрезке.времени, то такие модели называются статическими. Область применения этих моделей ограничивается краткосрочным прогнозированием. (Пример - статическая модель межотраслевого баланса).


В динамических моделях появляется возможность отразить во времени процесс функционирования и развития объекта управления. Фактор времени присутствует в явном виде (на­пример, долгосрочное прогнозирование развития спроса с использованием метода экстраполяции - в этом случае сложившаяся тенденция развития явления в прошлом времени переносится на будущее).

В детерминированных моделях каждому значению фактора (набору исходных данных) строго соответствует единственное значение результата, то есть существует функциональная связь. Частным случаем этого класса моделей являются квазирегулярные модели. Это модели динамики средних, описывающие процесс на основе средневзвешенных значений параметров модели. Они достаточно широко применяются в социально-экономических исследованиях. Их особенность состоит в том, что каждому значению аргумента соответствует определенная величина функции, то есть посредством модели можно получить вполне определенный результат (например, зависимость объема спроса от величины покупательных фондов населения).

Стохастические модели характеризуются более полным отражением действительности, они ближе к реальным процессам, гдеотсутствует жесткая детерминация. Например, на одинаковом оборудовании может быть разная производительность труда. Данный класс моделей носит вероятностный характер, так как они подсказывают результат с некоторой уверенностью. В данном классе моделей выделяют две разновидности: вероят­ностные и статистические модели.

Вероятностные модели используют вероятностные значения параметров процесса. Однако математическая структура веро­ятностных моделей строго детерминирована. Для каждого на­бора исходных данных в моделях определяется единственное распределение вероятностей случайных событий в рассматри­ваемом процессе. Для реализации вероятностных моделей не­обходимо, чтобы каждому состоянию отдельного элемента сис­темы соответствовала вероятность его попадания в это состоя­ние.

Для отображения этой моделью динамики функционирова­ния предприятия необходимо разделить траекторию возможных состояний каждого элемента системы на определенное (дискретное) число состояний и определить вероятности перехода этого элемента из одного состояния в другое с учетом взаимного влияния элементов.

В статистических моделях каждому набору исходных данных соответствует в модели какой-либо случайный результат из множества возможных. Таким образом, каждое решение предлагает одну случайную реализацию результатов моделируемого

процесса.

Одним из эффективных приемов исследования экономических систем, используемых в процессе принятия управленческих решений, является динамическое моделирование. Оно представляет собой создание условной математической модели деятельности предприятия и ее эффективности, по которой про­слеживаются изменения, происходящие в управляемом объекте под влиянием мер, преднамеренно предпринимаемых в процессе управления, а также под реальным воздействием внутренней и внешней среды. Схема такова:

Технология динамического моделирования включает:

1) определение проблемы, которая должна быть решена в управляемой системе;

2) установление факторов, которые могут проявить себя при решении проблемы, то есть выявление причинно-следственных связей и их влияния на результаты работы предприятия;

3) определение количественного выражения этих связей. Математическая модель динамического моделирования представляет собой систему этих связей и их количественное выражение. Создание такой модели - сложная и трудоемкая работа. Представляется оправданным использование типовых моделей с последующим их приспособлением к нуждам конкретного предприятия.

Необходимость использования динамического моделирования вызвана следующими причинами:

1) суждения руководителей о решениях, последствиях, которые они могут вызвать, в значительной мере субъективны;

2) проведение экспериментов по принимаемым решениям, для их проверки, в экономическом и социальном плане сложная задача;

3) ряд обстоятельств, связанных с реализацией решений, трудно учесть логическим путем;

4) действие внешней среды трудно предвидеть;

5) положительный эффект на одном участке предприятия может отражаться негативно на других участках объекта управ-ления.

Особенность динамического моделирования состоит в том, что, какими бы ни были первоначальное состояние и первоначальное решение, все последующие решения должны исходить из состояния, полученного в результате предыдущего решения.

Где f i (x i) - прирост выпуска по г-му направлению при выделении x i ресурсов,

J i (x) - суммарный прирост выпуска по направлениям от первого до i -го при выделении х ресурсов.

Многошаговость отражает реальное протекание процесса принятия решения либо искусственное расчленение процесса принятия однократного решения на отдельные этапы и шаги.

Сетевое моделирование весьма эффективно на всех этапах разработки решений: в ходе поиска решений, выбора оптимального варианта и контроля за реализацией решений. Положительными признаками его являются детализация проблемы, конкретизация ответственности, улучшение оперативного руководства и контроля, рациональное использование ресурсов и времени (подробное изложение в главе 8).

В системе моделирования хозяйственных явлений часто используются матричные модели, в которых совмещаются математические средства с наглядным отображением взаимосвязи разделов плана (или отчета) предприятия. В матричной модели ресурсы (производственные мощности, трудовые, материальные ресурсы, технологические нормативы) выражаются в сочетании с объемами производства, затратами (трудовыми, финансовыми, материальными) за определенный период, степенью использования ресурсов по их видам.

Матричная модель эффективно используется для выявления взаимосвязей между различными сторонами деятельности предприятий, возникающих в результате выполнения какого-либо управленческого решения. По существу матричная модель представляет собой один из видов балансовых моделей.

После создания математической модели производят пробные расчеты (в том числе с помощью вычислительных машин) для проверки степени близости модели к реальной действительности. По результатам сравнения осуществляется корректирование: либо модели, если она не соответствует действительности, либо меняются взаимоотношения в организации и правила принятия управленческих решений, если модель выявила их несовершенство. Одной из разновидностей являются имитационные модели, рассчитанные на использование ЭВМ, которые рассматриваются в следующем параграфе.

В зависимости от того, какими средствами, при каких условиях и по отношению к каким объектам познания реализуется способность моде­лей отображать действительность, возникает их большое разнообразие, а вместе с ним - классификации. Путем обобщения существующих клас­сификаций выделим базовые модели по применяемому математическому аппарату, на основе которых получают раз­витие специальные модели (рисунок 8.1).

Рисунок 8.1 - Формальная классификация моделей

Математические модели отображают изучаемые объекты (процессы, системы) в виде явных функциональных соотношений: алгебраических равенств и неравенств, интегральных и дифферен­циальных, конечно-разностных и других математических выражений (закон распределения случайной величины, регрессионные модели и т.д.), а также отношений математической логики.

В зависимости от двух фундаментальных признаков построения математической модели - вида описания причинно-следственных связей и изменений их во вре­мени - различают детерминистические и стохастические, статические и динамические модели (рисунок 8.2).

Цель схемы, представленной на рисунке, - отобразить следующие особенности:

1) математические модели могут быть и детерминистическими, и стохастическими;

2) детерминистические и стохастические модели могут быть и статическими, и динамическими.

Математическая модель называется детерминистической (детерминированной) , если все ее параметры и переменные являются однозначно определяемыми ве­личинами, а также выполняется условие полной определенности ин формации. В противном случае, в условиях неопределенности инфор­мации, когда параметры и переменные модели - случайные величи­ны, модель называется стохастической (вероятностной) .

Рисунок 8.2 – Классы математических моделей

Модель называется динами­ческой , если как минимум одна переменная изменяется по периодам времени, и статической , если принимается гипотеза, что переменные не изменяются по периодам времени.

В простейшем случае балансовые модели выступают в виде уравнения баланса, где в левой части располагается сумма каких-либо поступлений, а в правой - расходная часть также в виде суммы. Например, в таком виде представляется годовой бюджет организации.

На основе статистических данных могут строиться не только балан­совые, но и корреляционно-регрессионные модели.

Если функция Y зависит не только от переменных х 1 , х 2 , … х n , но и от других факторов, связь между Y и х 1 , х 2 , … х n является неточной или корреляционной в отличие от точной или функциональной связи. Корреляционными, например, в большинстве случаев являются связи, наблюда­ющиеся между выходными параметрами ОПС и факторами ее внутренней и внешней среды (см. тему 5).

Корреляционно-регрессионные модели получают при исследовании влияния целого комплекса факторов на величину того или иного признака путем примене­ния статистического аппарата. При этом ставится задача не только установить корреляционную связь, но и выразить эту связь аналитически, то есть подобрать уравнения, описываю­щие данную корреляционную зависимость (уравнение регрессии).

Для нахождения численного значения параметров уравне­ния регрессии пользуются методом наименьших квадратов. Суть этого метода состоит в том, чтобы выбрать такую линию, при которой сумма квадратов отклонений от нее ординат Y отдель­ных точек была бы наименьшей.

Корреляционно-регрессионные модели часто используются при исследовании явлений, когда возникает необходимость установить зависимость между соответствующими характеристиками в двух и более рядах. При этом преимущественно используется парная и множественная линейная регрессия вида

y = a 1 x 1 + a 2 x 2 + … + a n x n + b .

В результате применения метода наименьших квадратов ус­танавливаются значения параметров a или a 1 , a 2 , …, a n и b, а затем выполняются оценки точности аппроксимации и значимости полученного уравнения регрессии.

В особую группу выделяют графоаналитиче­ские модели . Они используют различные графические изображения и поэтому обладают хорошей наглядностью.

Теория графов - одна из теорий дискретной математики, изучает графы, под которыми понимается совокупность точек и линий их соединяющих. Граф - это самостоятельный математи­ческий объект (впервые ввел Кёниг Д.). На основе теории гра­фов наиболее часто строят древовидные и сетевые модели.

Древовидная модель (дерево) - это неориентированный связ­ный граф, не содержащий петель и циклов. Примером такой модели является дерево целей.

Сетевые модели нашли широкое применение в управлении производством работ. Сетевые модели (графики) отражают последовательность выполнения работ и продолжи­тельность каждой работы (рисунок 8.3).

Рисунок 8.3 - Сетевая модель производства работ

Каждая линия сетевого графика - это некоторая работа. Цифра рядом с ней означает продолжительность ее выполнения.

Сетевые модели позволяют найти так называемый критический путь и оптимизировать график производства работ по времени при ограничениях на другие ресурсы.

Сетевые модели могут быть детерминированными и стоха­стическими. В последнем случае продолжительности выполнения работ задаются законами распределения случайных величин.

Оптимизационные модели служат для определения оптимальной траектории достижения системой поставленной цели при наложении некоторых ограничений на управление ее поведениям и движением. В этом случае оптимизационные модели описывают различного рода задачи нахождения экстремума некоторой целевой функции (критерия оптимизации).

Для выявления оптимального способа достижения цели управления в условиях ограниченных ресурсов – технических, материальных, трудовых и финансовых – применяют методы исследования операций. К ним относятся методы математическо­го программирования (линейное и нелинейное, целочисленное, ди­намическое и стохастическое программирование), аналитические и вероятностно-статистические методы, сетевые методы, методы тео­рии массового обслуживания, теории игр (теории конфликтных си­туаций) и др.

Оптимизационные модели применяются для объемного и календар­ного планирования, управления запасами, распределения ресурсов и работ, замены, параметризации и стандартизации оборудования, рас­пределения потоков товарных поставок на транспортной сети и дру­гих задач управления.

Одним из основных достижений теории исследования операций считается типизация моделей управления и методов решения задач. Например, для решения транспортной задачи, в зависимости от ее раз­мерности, разработаны типовые методы - метод Фогеля, метод по­тенциалов, симплекс-метод. Также при решении задачи управления запасами, в зависимости от ее постановки, могут использоваться ана­литические и вероятностно-статистические методы, методы динами­ческого и стохастического программирования.

В управлении особое значение придается сетевым методам плани­рования. Эти методы позволили найти новый и весьма удобный язык для описания, моделирования и анализа сложных многоэтапных работ и проектов. В исследовании операций значительное место отво­дится совершенствованию управления сложными системами с при­менением методов теории массового обслуживания (см. раздел8.3) и аппарата марков­ских процессов.

Модели марковских случайных процессов - система дифференци­альных уравнений, описывающих функционирование системы или ее процессов в виде множества упорядоченных состояний на некоторой траектории поведения системы. Этот класс моделей широко исполь­зуется при математическом моделировании функционирования слож­ных систем.

Модели теории игр служат для выбора оптимальной стратегии в ус­ловиях ограниченной случайной информации или полной неопреде­ленности.

Игра - математическая модель реальной конфликтной си­туации, разрешение которой ведется по определенным правилам, алгоритмам, описывающим некоторую стратегию поведения лица, принимающего решение в условиях неопределенности.

Различают «игры с природой» и «игры с противником». Исходя из ситуации опре­деляются методы и критерии оценки принятия решений. Так, при «играх с природой» применяют критерии: Лапласа, максиминный (кри­терий Вальда) и минимаксный, Гурвица и Сэвиджа и ряд других алго­ритмических правил. При «играх с противником» для принятия реше­ний используются платежные матрицы, максиминный и минимаксный критерии, а также специальные математические преобразования в свя­зи с тем, что лицу, принимающему решение, противостоит недобро­желательный противник.

Рассмотренные типы математических моделей не охватыва­ют всего их возможного многообразия, а лишь характеризуют отдельные виды в зависимости от принятого аспекта классифи­кации. В.А.Кардашем была предпринята попытка создания сис­темы классификации моделей по четырем аспектам детализации (рисунок 8.4).

А - модели без пространственной дифференциации параметров;

В - модели с пространственной дифференци­ацией параметров

Рисунок 8.4 - Классификация моделей по четырем аспектам детализации

С развитием вычислительных средств одним из распространенных методов принятия решений выступает деловая игра, представляющая собой численный эксперимент с активным участием человека. Существуют сотни деловых игр. Они применяются для изу­чения целого ряда проблем управления, экономики, теории организа­ции, психологии, финансов и торговли.



Похожие статьи