Ксенобиотики все кроме. Ксенобиотики (химические вещества в продуктах)


Человек является гетеротрофом, т.е. получает питательные вещества и энергию извне в виде органических соединений (см. табл. 1).

Таблица 1 Основные компоненты

Углеводы

Витамины,

элементы

Энерге-тическая ценность

1г = 4,1 ккал

1 г масла = 9,3 ккал (39,0 кДж)

1г = 4,1 ккал

1 г спирта = 7,1 ккал

Биологическая

ценность

50% животные белки, т.к.
в них есть
незаменимые аминокислоты

25% растительные масла, т.к. в них есть полиненасыщенные жирные кислоты

клетчатки

Витамины,

элементы

Существует два пути поступления продуктов переваривания пищи, в том числе и ксенобиотиков, во внутреннюю среду организма: водорастворимые компоненты поступают в печеночную портальную систему и в печень; жирорастворимые вещества поступают в лимфатические сосуды и затем в кровь через грудной лимфатический проток.

Для ксенобиологии важно представление об антиалиментарных факторах питания. Этот термин распространяется на вещества природного происхождения, которые входят в состав продуктов питания. К ним относят:

1) ингибиторы пищеварительных ферментов (соевый ингибитор трипсина Кунитца, семейство соевого ингибитора Баумана-Бирка, семейства картофельных ингибиторов хемотрипсина и трипсина I и II, семейство ингибиторов трипсина/α-амилазы);

2) цианогенные гликозиды – это гликозиды некоторых цианогенных альдегидов и кетонов, которые при ферментативном или кислотном гидролизе выделяют синильную кислоту (лимарин белой фасоли, амигдалин косточковых);

3) биогенные амины (серотонин фруктов и овощей, тирамин и гистамин ферментатированных продуктов);

4) алкалоиды (диэтиламид лизергиновой кислоты – галлюциноген из спорыньи, морфин из сока головок мака, кофеин, теобромин, теофиллин из зерен кофе и листьев чая, соланины и чаконины из картофеля);

5) антивитамины (лейцин нарушает обмен триптофана и витамина РР, индолилуксусная кислота – антивитамин ниацина, аскорбатоксидаза из овощей – антивитамин аскорбиновой кислоты, тиаминаза рыб – антивитамин тиамина, линатин из семян льна – антагонист пиридоксина, авидин из яичного белка – антивитамин биотина и др.);

6) факторы, снижающие усвоение минеральных веществ (щавелевая кислота, фитин – инозитолгексафосфорная кислота из бобовых и злаковых, танины);

7) яды пептидной природы (десять токсичных циклопептидов из бледной поганки, наиболее токсичен α-аманитин);

8) лектины – гликопротеины, изменяющие проницаемость мембран (токсичны рицин (лектин из семян клещевины), холерный токсин);

9) этанол – нарушение нормальных биохимических процессов образования и использования энергии с переходом на психологическую и биологическую зависимость от экзогенного алкоголя.

В пище человека содержится множество химических веществ, часть из которых относится к ксенобиотикам. Ксенобиотики могут являться нормальным компонентом продуктов питания, могут обогащать пищу в процессе ее приготовления (например, пищевые добавки), а также могут по каким-либо причинам явиться контаминантами приготовленной пищи. Некоторые пищевые добавки целенаправленно добавляются к пище с целью оптимизации ее приготовления. Химикаты (непрямые добавки в пище) используются в технологиях ее приготовления, хранения, консервации и т.п. Контаминанты (ртуть, мышьяк, селен и кадмий) поступают из окружающей среды и являются результатом урбанизации общества. Из природных источников возможно получение основных компонентов пищи (белки, жиры, углеводы); веществ, способных изменять функционирование органов и тканей (аллергия, развитие зоба, ингибиторы протеолиза и др.); веществ, являющихся ядами для потребителя пищи.

Пищевыми добавками называют природные или синтетические, физиологически активные и инертные химические вещества, целенаправленно или случайно добавленные к пище. Прямые пищевые добавки включают вещества, которые вводятся в пищу в процессе ее приготовления для придания ей определенных характеристик. К таким пищевым добавкам относят антиоксиданты, консерванты, витамины, минералы, ароматизаторы, красители, эмульгаторы, стабилизаторы, закислители и др.

Наличие пищевой добавки по решению стран Европейского союза должно указываться на этикетке. При этом она может обозначаться как индивидуальное вещество или как представитель конкретного функционального класса в сочетании с кодом Е. Согласно предложенной системе цифровой кодификации пищевых добавок, их классификация выглядит следующим образом: Е100–Е182 – красители; Е200 и далее – консерванты; Е300 и далее – антиокислители (антиоксиданты); Е400 и далее – стабилизаторы консистенции; Е500 и далее – регуляторы кислотности, разрыхлители; Е600 и далее – усилители вкуса и аромата; Е700–800 – запасные индексы; Е900 и далее – глазирующие агенты, улучшители хлеба; Е1000 – эмульгаторы. Применение пищевых добавок требует знания предельно допустимой концентрации чужеродных веществ – ПДК (мг/кг), допустимой суточной дозы – ДСД (мг/кг массы тела) и допустимого суточного потребления – ДСП (мг/сут), рассчитываемое как произведение ДСД на среднюю величину массы тела – 60 кг.

Непрямые пищевые добавки включают вещества, вошедшие в состав пищи непреднамеренно (например, при контакте пищи с технологическим оборудованием или упаковочным материалом). Из пищевых загрязнителей чаще всего рассматриваются три группы: 1) афлатоксины; 2) пестициды; 3) диоксины и свинец.

Особый интерес представляет использование химических компонентов пищи (витамины, минералы) для лечения специфических заболеваний в дозах, превышающих суточную потребность. Клиническое использование железа, фтора, йода исследовано достаточно детально. Безопасность использования витаминов и минералов в качестве добавок к пище или компонентов лекарств зависит: 1) от цитотоксичности химического вещества; 2) его химической формы; 3) общего суточного потребления; 4) длительности и регулярности потребления; 5) морфофункционального состояния тканей-мишеней и органов человека. Жирорастворимые витамины являются более токсичными, чем водорастворимые из-за их повышенного накопления в липидной фазе мембран клеток и низкой скорости элиминации.

Ниацин в высоких дозах (граммы) используется для снижения уровня холестерола в крови. Практически во всех случаях применения никотиновой кислоты проявляются побочные эффекты (покраснение кожных покровов, приливы к голове).

Медь является наиболее токсичным, но наиболее важным микроэлементом. В следовых количествах медь находят практически во всех продуктах питания, что не вызывает интоксикаций, за исключением заболевания Вильсона-Коновалова (совместное поражение печени и ядер гипоталамуса). Человек менее чувствителен к меди по сравнению с млекопитающими (овцы). Токсичность меди следует увязывать с ее взаимодействием с железом, цинком и белками.

Железо в виде окислов придает окраску пище. В США фосфаты, пирофосфаты, глюконаты, лактаты, сульфаты железа и восстановленное железо разрешены в качестве пищевых добавок. Всасывание негеминового железа строго контролируется в слизистой кишечника. Избыточное поступление железа с пищей и действие веществ, ускоряющих его всасывание, может привести к накоплению железа в организме. Задержка и накопление железа в организме человека весьма индивидуальны и не поддерживаются общими закономерностями.

Цинк в виде нескольких соединений используется в пищевых добавках. Кормление птицы и скота обогащенным цинком кормом может привести к накоплению этого металла в мясных пищевых продуктах. Известно, что индивидуальная непереносимость цинка человеком весьма вариабельна. Однако, применение в пище средних концентраций солей цинка в качестве пищевых добавок, как правило, не сопровождается развитием интоксикации.

Селен является одним из самых токсичных элементов. До настоящего времени потребности в селене научно не обоснованы, а широкое применение селена в пищевых добавках базируется на интуитивных предпосылках. Следует учитывать географические провинции с разным содержанием селена в объектах окружающей среды при использовании пищевых добавок, обогащенных селеном, с целью предупреждения осложнений. Дефицит селена в организме, возможно, является одной из ведущих причин того, что обычный воздух, становится нашим страшным врагом. В условиях селенодефицитности кислород воздуха через свои активные формы разрушает в организме большинство витаминов, нарушает деятельность иммунной системы и системы обезвреживания внутренних шлаков организма. Иммунная система в условиях дефицита селена теряет свою агрессивность по отношению к болезнетворным микроорганизмам и раковым клеткам, а зависимая от него щитовидная железа, регулирующая большинство обменных процессов, снижает свою функциональную активность, что отрицательно отражается на росте и развитии организма.

Общим итогом селенодефицитности человеческого организма является возникновение и развитие десятков тяжело протекающих заболеваний, начиная с повышенной ломкости капилляров и неподвижности сперматозоидов, преждевременного выпадения волос и бесплодия и кончая анемией, диабетом, эндемическим зобом, гепатитами, инфарктом миокарда и инсультом, рядом онкологических заболеваний.

Селен широко распространен в объектах окружающей среды. Дефицит селена в окружающей среде имеется в Новой Зеландии и в части регионов Китая, избыток – в некоторых регионах Китая и в штате Северная Дакота (США). Растения могут аккумулировать селен. В них он переходит в состав органических соединений. При отмирании растения селен возвращается в почву и используется другими растениями. Зерновые могут аккумулировать большие количества селена из селен-обогащенных почв. В таких регионах пастбищное содержание животных может привести к интоксикации животных, а при хроническом отравлении возможно развитие поражения зрения и «щелочной болезни». При избыточном поступлении селена возникают нарушения органов пищеварительного тракта и гепатобилиарной системы. Хроническая интоксикация жителей селеном описана в Китае. Основные симптомы: ломкость волос, отсутствие пигментации новых волос, хрупкие ногти с пятнами, продольные стрии кожи. Неврологические симптомы обнаруживались у половины пораженных людей. Аналогичные симптомы описаны также у жителей Венесуэлы, проживающих в регионах, обогащенных селеном.

Рассмотрим некоторые ксенобиотики, используемые для улучшения органолептических и физико-химических свойств пищи.

1. Сахарин в 300–500 раз слаще, чем сахароза. Не накапливается
в тканях, не подвергается метаболизму и выводится из организма в неизмененном виде. Не оказывает мутагенного действия. В некоторых случаях способствует развитию экспериментальных опухолей (рак мочевого пузыря). Однако в эпидемиологических исследованиях угроза риска развития опухолей пока не нашла подтверждения.

2. Цикламат использовался как подсластитель. Его метаболизм зависит от кишечной микрофлоры. После первого приема цикламат выводится в большом количестве без изменений. При повторных приемах в кишечнике возникают метаболиты, с которыми, возможно, связаны негативные эффекты препарата: развитие в эксперименте на крысах рака мочевого пузыря. И хотя этот эффект не был воспроизведен на собаках, мышах, хомячках и приматах, в 1969 году применение цикламата в США было запрещено.

3. Аспартам как заменитель сахара менее токсичен, поскольку при его гидролизе получаются фенилаланин и аспарагиновая кислота. Накопление фенилаланина может ухудшить состояние больных фелилпировиноградной олигофренией (фенилкетонурия).

Наиболее употребляемые подсластители: сорбит, ацесульфам калия (сунет), аспартам (санекта, нутрасвит, сладекс), цикламовая кислота и ее соли (споларин, цикломаты), изомальтит (изомальт), сахарин и его соли, сукралоза (трихлоргалактосахароза), тауматин, глицирризин, неогесперидиндигидрохалкон (неогесперидин ДС), мальтит и мальтитный сироп, лактит, ксилит.

4. Пищевые красители включают природные и синтетические субстанции. К природным относят кармин, паприку, шафран и турмерик. Некоторые нутриенты придают окраску пищевым продуктам (каротины, рибофлавин, хлорофиллы) и входят в состав соков, масел и экстрактов овощей и фруктов. Синтетические соединения вводятся в пищу на этапах ее приготовления и сертифицируются государством. Некоторые из потенциальных красителей могут участвовать в малигнизации клеток (чаще всего они не канцерогены, а промоторы). Синтетические пищевые красители и некоторые ароматизаторы (метилсалицилат) могут вызывать гиперактивность детей. Случаи гиперактивности могут завершаться локальными поражениями мозга (инсульт). Однако, проблема окраски пищи как с целью ее привлекательности, так и биомедицинского применения, остается актуальной и в настоящее время. Несанкционированное введение добавок, улучшающих внешний вид и маркетинговую стоимость продуктов питания, получило очень широкое распространение и требует обязательного регламентирования органами госнадзора.

5. Консерванты включают антиоксиданты и антимикробные агенты. Антиоксиданты подавляют развитие изменений цвета, питательной ценности и формы продуктов путем подавления перекисного окисления липидов мембран пищевых продуктов, а также свободных жирных кислот. Антимикробные агенты подавляют рост микроорганизмов, дрожжей, продукты жизнедеятельности которых вызывают интоксикации или развитие инфекционного процесса, а также изменяют физико-химические свойства продуктов питания. Химическим консервантам противостоят методы сохранения пищи при низких температурах или использование метода облучения пищи. Однако технические средства пока проигрывают химическим из-за дороговизны и радиофобии людей.

5.1. К антиоксидантным пищевым добавкам относят аскорбиновую кислоту, пальмитиновый эфир аскорбиновой кислоты, токоферолы, бутилированный гидроксианизол (BHA) и бутилированный гидрокситолуен (BHT), этоксиквин, пропиловый эфир галловой кислоты и t-бутилгидрохинон (TBHQ). Широко используемые антимикробные агенты (нитриты, сульфиты) также обладают антиоксидантными свойствами. На протяжении многих лет BHA и BHT считаются потенциально опасными веществами. Оба относятся к жирорастворимым антиоксидантам и способны увеличивать в плазме крови активность некоторых ферментов печени. Антиоксиданты обеспечивают защиту от некоторых электрофильных молекул, которые могут связываться с ДНК и оказывать мутагенное действие и индуцировать опухолевый рост. Введение BHA в больших дозах (2% от диеты) вызывает гиперплазию клеток, папилломы и малигнизацию клеток в желудке некоторых животных. В то же время BHA и BHT обеспечивают защиту клеток печени от действия канцерогена – диэтилнитрозомочевины.

5.2. Антимикробные агенты (нитриты и сульфиты). Нитриты подавляют рост Clostridium botulinum и тем самым уменьшают риск ботулизма. Нитриты взаимодействуют с первичными аминами и амидами с образованием соответствующих N-нитрозодериватов. Многие, но не все N-нитрозо-соединения являются канцерогенами. Аскорбиновая кислота и другие восстанавливающие агенты подавляют эти реакции нитритов, особенно в кислой среде желудка. Некоторые нитрозамины возникают в процессе приготовления пищи, но основная масса нитрозаминов образуется в желудке. Неканцерогенные токсические эффекты нитритов проявляются при их высокой концентрации. У людей, употребляющих долго относительно большое количество нитритов, развивается метгемоглобинемия.

Диоксид серы и его соли используются для предупреждения развития коричневой окраски продуктов питания, для отбеливания, антимикробного действия широкого спектра и в качестве антиоксидантов. Сульфиты весьма реактивны, в связи с чем допускается только низкое их содержание в продуктах питания. Сульфиты способны вызывать астму у чув-ствительных индивидуумов. Около 20 смертных случаев связаны с идиосинкразией людей к нитритам (особая чувствительность к напиткам, содержащим сульфиты). Примерно 1–2% больных бронхиальной астмой проявляют повышенную чувствительность к сульфитам. Патогенез сульфит-индуцированной астмы пока не ясен. Возможна патогенетическая роль IgE-опосредованных реакций.

Токсичные субстанции пищи впервые были суммированы в списке «Substances Generally Recognized as Safe» – GRAS-субстанции в 60-х годах прошлого века. Он постоянно пополняется и выполняет важную роль в обеспечении безопасности питания людей и животных.

Давно замечено, что малокалорийное питание продлевает жизнь многих организмов – от одноклеточных до приматов; так, крысы, потребляющие на 30–50% меньше калорий, чем обычно, живут не три года, а четыре. Механизм явления пока не вполне ясен, хотя известно, что происходит некоторое общее изменение метаболизма, при котором снижается образование свободных радикалов (многие ученые возлагают вину за старение именно на них). Кроме того, падает концентрация глюкозы и инсулина в крови, что говорит об участии в этих процессах нейроэндокринной системы. Не исключено, что умеренное голодание действует и как слабый стресс, который мобилизует скрытые резервы организма.

Американские микробиологи работали с дрожжами, длительность жизни которых определяется количеством их возможных делений. Оказалось, что в среде с пониженным содержанием питательных веществ число поколений у них возрастает на 30%. При этом микроорганизмы значительно увеличивают интенсивность дыхания, что является ключевым моментом, поскольку дрожжи с дефектным геном белка, задействованного в работе дыхательной цепи, не становятся долгожителями.

Нужно учесть, что дрожжи получают энергию двумя способами – дыханием и ферментацией. Когда глюкозы в среде достаточно, гены, контролирующие дыхание, молчат и сбраживание глюкозы в этанол идет анаэробно, то есть без участия кислорода. Если же глюкоза в дефиците, включается дыхание – значительно более эффективный процесс добывания энергии.



С развитием индустриального общества произошли перемены в формировании биосферы. Множество чужеродных веществ, являющихся порождением деятельности человечества, попало в окружающую среду. В итоге они влияют на жизнедеятельность всех живых организмов, в том числе и нашу.

Что такое ксенобиотики?

Ксенобиотики – это синтетические вещества, которые отрицательно действуют на любой организм. К этой группе относятся отходы промышленной деятельности, средства бытового назначения (порошки, средства для мытья посуды), строительные материалы и т.д.

Большое количество ксенобиотиков – это вещества, ускоряющие появление урожая. Очень важно для сельского хозяйства повысить устойчивость культуры к различным вредителям, а также придать ей хороший внешний вид. Чтобы достичь такого эффекта, используют пестициды, которые и относятся к чужеродным для организма веществам.

Строительные материалы, клей, лаки, хозтовары, пищевые добавки – все это ксенобиотики. Относятся к этой группе, как ни странно, и некоторые биологические организмы, например, вирусы, бактерии, патогенные грибы, гельминты.

Вещества, чужеродные для всего живого, пагубно влияют на многие метаболические процессы. К примеру, тяжелые металлы могут останавливать работу мембранных каналов, разрушать функционально важные белки, дестабилизировать плазмалемму и клеточную стенку, вызывать аллергические реакции.

Любой организм в той или иной степени приспособлен к выведению токсических ядов. Однако большие концентрации вещества невозможно удалить стопроцентно. Ионы металлов, токсические органические и неорганические вещества в итоге накапливаются в организме и через какой-то промежуток времени (зачастую через несколько лет) приводят к патологиям, заболеваниям, аллергии.

Ксенобиотики – это яды. Они могут проникать в пищеварительную систему, дыхательные пути и даже сквозь неповрежденную кожу. Пути попадания зависят от агрегатного состояния, строения вещества, а также условий среды.

Через носовую полость с воздухом или пылью в организм попадают газообразные углеводороды, этиловый и метиловый спирты, ацетальдегид, хлороводород, эфиры, ацетон. По пищеварительной системе проникают фенолы, цианиды, тяжелые металлы (свинец, хром, железо, кобальт, медь, ртуть, таллий, сурьма). Стоит заметить, что такие микроэлементы, как железо или кобальт, необходимы организму, однако их содержание не должно превышать тысячной доли процента. В повышенных дозах они также приводят к негативному эффекту.

Классификация ксенобиотиков

Ксенобиотики – это не только химические вещества органического и неорганического происхождения.

К этой группе относятся и биологические факторы, среди которых вирусы, бактерии, болезнетворные протисты и грибы, гельминты. Как ни странно, но такие физические явления, как шум, вибрация, радиация, излучение, тоже относятся к ксенобиотикам.

По химическому составу все яды делятся на:

  • Органические (фенолы, спирты, углеводороды, альдегиды и кетоны, галогенпроизводные, эфиры и т. д.).
  • Элементоорганические (фосфорорганические, ртутьорганические и другие).
  • Неорганика (металлы и их оксиды, кислоты, основания).

По происхождению химические ксенобиотики делятся на следующие группы:

  1. Промышленные.
  2. Бытовые.
  3. Сельскохозяйственные.
  4. Отравляющие вещества.

Почему ксенобиотики влияют на здоровье?

Появление чужеродных веществ в организме может серьезно сказаться на его работоспособности. Повышенная концентрация ксенобиотиков ведет к появлению патологий, изменениям на уровне ДНК.

Иммунитет – один из главных защитных барьеров. Влияние ксенобиотиков может распространиться и на иммунную систему, мешая нормальной работе лимфоцитов. В итоге эти клетки функционируют неправильно, что приводит к ослаблению защиты организма и появлению аллергии.

Геном клетки чувствителен к воздействию любого мутагена. Ксенобиотики, проникая в клетку, могут нарушать нормальную структуру ДНК и РНК, что приводит к появлению мутаций. Если число таких событий велико, появляется риск развития онкологии.

Некоторые яды действуют избирательно на орган-мишень. Так, выделяют нейротропные ксенобиотики (ртуть, свинец, марганец, сероуглерод), гематотропные (бензол, мышьяк, фенилгидразин), гепатотропные (хлорированные углеводороды), нефротропные (соединения кадмия и фтора, этиленгликоль).

Ксенобиотики и человек

Хозяйственная и промышленная деятельность пагубно сказывается на здоровье человека из-за большого количества отходов, химических веществ, фармацевтических препаратов. Ксенобиотики сегодня встречаются практически везде, а значит, вероятность их попадания в организм всегда высокая.

Однако самые мощные ксенобиотики, с которыми встречается повсеместно человек — это лекарства. Фармакология как наука изучает влияние препаратов на живой организм. По данным специалистов, ксенобиотики такого происхождения являются причиной 40 % гепатитов, и это не случайно: основная функция печени заключается в обезвреживании ядов. Поэтому этот орган больше всех страдает от больших доз препаратов.

Ксенобиотики – это чуждые организму вещества. Человеческое тело развило в себе множество альтернативных путей для выведения этих токсинов. Например, яды могут быть нейтрализованы в печени и выведены в окружающую среду через дыхательную, выделительную системы, сальные, потовые и даже молочные железы.

Несмотря на это, сам человек должен принимать меры для максимального уменьшения пагубного влияния ядов. Во-первых, необходимо тщательно выбирать продукты питания. Добавки группы «Е» являются сильными ксенобиотиками, поэтому покупки таких товаров следует избегать. Не стоит только по внешнему виду выбирать овощи и фрукты.

Всегда обращайте внимание на срок годности, т. к. по его истечении в продукте образуются яды. Всегда стоит знать меру лекарственным препаратам. Конечно, для эффективного лечения часто это вынужденная необходимость, однако следите, чтобы это не переросло в систематическое ненужное потребление фармацевтики.

Избегайте работы с опасными реагентами, аллергенами, различными синтетическими веществами. Минимизируйте влияние бытовой химии на ваше здоровье.

Заключение

Не всегда можно наблюдать пагубное действие ксенобиотиков. Порой они накапливаются в больших количествах, превращаясь в мину замедленного действия. Чужие организму вещества вредят здоровью, что приводит к развитию заболеваний. Поэтому помните о минимальных мерах профилактики. Возможно, вы не заметите негативного эффекта сразу, однако через несколько лет ксенобиотики могут привести к тяжелым последствиям. Не стоит забывать об этом.

Сейчас, наверное, большинство из читателей подумало: -«Что это за словечко такое научное?! Наверное что-нибудь совсем недавно появившееся…то, что нам не знакомо и с чем мы ещё не имели дело!» Но, нет, спешу Вас расстроить — с ксенобиотиками знаком каждый из нас, просто каждый знает их под несколько другими названиями! Вот, например, несколько более привычных для нас названий, входящих в эту группу веществ — тяжёлые металлы, нитраты, пестициды, нефтепродукты и др. Знаю, что многих я сейчас шокирую, но попробуйте отгадать — какой ксенобиотик является самым распространённым за последние сто лет?!

Правильный ответ — лекарственные препараты. Да-да, не удивляйтесь так сильно, абсолютно все лекарственные препараты, как все вышеперечисленные ядовитые вещества являются чужеродными для нашего организма, т.е. ксенобиотиками. Термин «ксенобиотик» происходит от 2 греческих слов «xenos» и «bios», которые обозначают «чужеродность для жизни». Чужеродность тех или иных веществ в двух словах можно объяснить изменениями или нарушениями внутренних процессов или компонентов на различных уровнях (молекулярный, клеточный, организменный). Впоследствии все эти изменения могут вызвать и вызывают(это лишь вопрос времени) аллергические реакции, родовые мутации, редкие и очень специфические заболевания и многое другое!

Предлагаю рассмотреть основные группы ксенобиотиков на предмет большей опасности для человека:

1. Физические ксенобиотики:

К этой группе относят такие факторы, как шум, вибрация, радиация, различные виды излучений. Не спешите облегчённо выдыхать — мол, меня ничего из этого не касается, т.к. ни шума, ни вибраций, ни радиации у меня в жизни нет! Всё это есть абсолютно в каждом доме! Вот вам самый простой пример — беспроводная сеть Wi-Fi. Не призываю сейчас отказаться от использования беспроводных технологий, но будьте благоразумны и «не спите на Wi-Fi адаптере»…! Или вот ещё популярное в наш век изобретение — микроволновая печь! О ней и о её воздействии на организм мы даже написали, обязательно почитайте!

Понятно, что вся эта группа имеет не природное происхождение, а искусственно создана человеком. Ещё одна отличительная особенность этой группы — это то, что все эти ксенобиотики оказывают на человека внешнее воздействие, т.е проникают в человеческий организм посредством контакта с поверхностью тела.

2. Биологические ксенобиотики:

Эта группа ксенобиотиков имеет природное происхождение, даже несмотря на то, что многие бактерии и вирусы мутируют под воздействием последствий человеческой деятельности! Биологические ксенобиотики попадают в человека чаще всего либо через лёгкие, либо через желудочно-кишечный тракт.

3. Химические ксенобиотики:

К их числу относятся:

1. продукты хозяйственной деятельности человека (промышленность и с\х);

2. вещества бытовой химии;

3. лекарственные препараты;

Очень обширная группа ксенобиотиков и достаточно страшная с точки зрения мнимой безопасности всех входящих в неё веществ!

— Из перечисленного, наверное, только первое (продукты хозяйственной деятельности) мало-мальски вызывает обеспокоенность у широкой публики. Да и то, информации на этот счёт крайне мало и она весьма противоречива! Дело в том, что последние несколько десятков лет исследования в области сельского хозяйства в нашей стране практически не проводятся, а 95% удобрений и подкормок — это импорт! Поэтому едим мы с Вами зелёненькие огурчики с красненькими помидорчиками и знать не знаем, что на самом деле попадает нам в желудок…

И только редкие статейки в газетах о том, что в очередной раз где-нибудь под Волгоградом закрыли фермерское хозяйство китайских овощеводов, которые выращивали овощи в теплицах, используя тонны непонятных китайских удобрений, и после контрольного анализа их продукции в ней обнаружилось превышение содержания нитратов, инсектицидов, канцерогенов и других страшных веществ в десятки раз, свидетельствуют о том, что «не всё полезно, что в рот полезло…» Одна из подобных статей опубликована в нашей группе в Контакте. Не забудьте подписаться на нашу группу!:)

— К сожалению большинство из нас совершенно не задумывается над опасностью, которая таится в следующей подгруппе химических ксенобиотиков — веществах бытовой химии.

И одни из самых страшных представителей этих ксенобиотиков — это средства для мытья посуды! Сколько бы Вы не полоскали тарелки и столовые приборы после использования этих средств, но полностью смыть их всё-равно не удастся! И очень скоро они окажутся вместе с Вашей едой в Вашей ложке, а затем и Вашем желудке…

Редко, кто обращает внимание на состав того или иного моющего средства и очень напрасно! Может быть хоть у кого-то отпало желание покупать эту «химическую фабрику». Ну вот послушайте, например, лишь некоторые ингредиенты — ПАВ, фенолы, крезолы, нефтяные дистилляты, триклозан, аммиак, фтолат, формальдегид и прочее. Расписывать вред каждого сейчас не буду, но поверьте на слово — ничего хорошего от этих химикатов с Вами не случится! Кстати, а посуда прекрасно отмывается содой или горчичным порошком!:)

Вот мы и добрались до третьей, так любимой многими, подгруппы — лекарственные препараты. Знаю, что встречу неодобрение со стороны многих, кто доверяет своё здоровье «волшебной таблетке», но тем не менее послушайте. Да, и ещё, аргументы вроде таких: «Я принял лекарство и всё прошло» здесь не совсем уместны и вот почему: фармацевтика — это огромная индустрия в которой работают миллионы людей, чуть ли не каждый день появляется очередное новое лекарство с чудным названием и непонятным большинству из нас содержанием. Проследить действие вновь создаваемых химических соединений на человека за его непродолжительную жизнь трудно. А оценить степень токсичности веществ, которые путём метаболических процессов образуются из этой «химии» в организме человека практически невозможно!

Эта группа ксенобиотиков, на мой взгляд, является наиболее страшной и опасной по причине кажущейся полезности для человека и активно продвигаемой необходимости использования всего вышеперечисленного!

Самое важное!

В качестве заключения хотелось бы сказать, что колоссальное количество жизненной энергии наш организм тратит на обезвреживание и выведение случайно или намеренно попавших в организм ксенобиотиков. Я не понимаю, для чего делать и без того короткую человеческую жизнь ещё короче?!

Предмет ксенобиологии, проблемы и задачи, связь с другими науками

Ксенобиотиками называют чужеродные, ранее не встречавшиеся в организме органические и неорганические соединения. К таким веществам относятся, например, лекарственные препараты, пестициды, промышленные яды, отходы производств, пищевые добавки, косметические средства и пр. Так как в тканях обычно в следовых количествах присутствуют многие неорганические элементы, биологическая функция которых неизвестна, поэтому неорганические вещества можно относить к ксенобиотикам только в том случае, если они не являются необходимыми для метаболических процессов.

Живой организм - это открытая система. Среди веществ, поступающих из окружающей среды в организм, различают естественный поток (питательные вещества) и поток веществ природного и синтетического происхождения, которые не входят в состав данного организма. Эти потоки взаимодействуют на всех уровнях организма (молекулярном, клеточном, органном). Избыток токсических чужеродных соединений (ксенобиотиков) вызывает замедление или остановку процессов роста, развития, размножения. Для поддержания гомеостаза в организме существуют регуляторные механизмы.

Ксенобиология изучает закономерности и пути поступления, выведения, распространения, превращения чужеродных химических соединений в живом организме и механизмы вызываемых ими биологических реакций.

Ксенобиология подразделяется на более узкие области - ксенобиофизику, ксенобиохимию, ксенофизиологию и др. Задачами ксенобиофизики являются изучение процессов взаимодействия экзогенных ксенобиотиков с транспортными системами организма, с различными клеточными структурами, в первую очередь с плазмолеммой, и механизмов поступления ксенобиотиков.

Предметом изучения ксенобиохимии является метаболизм ксенобиотиков в организме. Это направление ксенобиологии включает ряд разделов биологической, органической и аналитической химии, фармакологии, токсикологии и других наук. В задачу статической ксенобиохимии входит установление структуры молекул метаболитов ксенобиотиков, образующихся в организме, изучение их распространения, локализации в организмах и тканях. Динамическая ксенобиохимия исследует механизмы превращения ксенобиотиков в организме, структуру и каталитические свойства фермен­тов, участвующих в этих превращениях.

Ксенофизиология изучает процессы жизнедеятельности, и функции живых организмов на всем протяжении их развития в условиях действия ксенобиотиков. Ксенофитофизиология изучает особенности поступления и выделения, специфику процессов биотрансформации и аккумулирования ксенобиотиков в растительном организме.

Ксенобиология связана с биотехнологией, которая использует принципы метаболизма ксенобиотиков, в частности ферментный катализ, в синтезе органических веществ. Связь ксенобиологии с медициной обеспечивает безопасность лечения в результате изучения механизма действия и метаболизма новых лекарственных препаратов.

Возрастание актуальности проблем, рассматриваемых в ксенобиологии, обусловлено быстрым увеличением количества синтетических соединений, вовлекаемых в круговорот веществ в природе. Среди ксенобиотиков существует ряд полезных веществ, необходимых медицине, растениеводству, животноводству и т. д. Поэтому одной из задач ксенобиологии явля­ется разработка приемов и подходов для создания системы определения биологической активности ксенобиотиков.

Виды ксенобиотиков, их классификация по степени опасности и токсичности

Выделяют следующие типы веществ, вызывающих глобальное химическое загрязнение биосферы:

Газообразные вещества;

Тяжелые металлы;

Удобрения и биогенные элементы;

Органические соединения;

Радиоактивные вещества (радионуклиды) - предмет изучения радиобиологии.

Многие из ксенобиотиков и поллютантов являются сильнодействующими ядовитыми веществами.

В самом широком смысле яды - это химические вещества экзогенного происхождения (синтетические и природные), которые после проникновения в организм вызывают структурные и функциональные изменения, сопровождающиеся развитием характерных патологических состояний.

В зависимости от источника происхождения и практического применения токсические вещества (яды) подразделяют на следующие группы:

Промышленные яды: органические растворители (дихлорэтан, тетрахлорметан, ацетон и др.), вещества, применяемые в качестве топлива (метан, пропан, бутан), красители (анилин и его производные), фреоны, химические реагенты, полупродукты органического синтеза и др.;

Химические удобрения и средства защиты растений, в том числе пестициды;

Лекарственные средства и полупродукты фармацевтической промышленности;

Бытовые химикаты, используемые в качестве инсектицидов, красителей, лаков, парфюмерно-косметических средств, пищевых добавок, анти-оксидантов;

Растительные и животные яды;

Боевые отравляющие вещества.

В зависимости от преимущественного поражения соответствующих органов и тканей человека яды подразделяют на следующие категории: сердечные яды, нервные яды, печеночные яды почечные яды, кровяные (гемические) яды, желудочно-кишечные яды, легочные яды, яды, поражающие иммунную систему, яды, поражающие кожу.

Токсичность - мера несовместимости вещества с жизнью, величина, обратная абсолютному значению среднесмертельной дозы или концентрации.

Величины LC50 или LD 5 o - это соответственно концентрация или доза вещества, вызывающая половинное подавление регистрируемой реакции (например, гибель 50 % организмов).

Опасность чужеродного вещества - вероятность появления вредных для здоровья эффектов в реальных условиях их производства и применения.

Вредные вещества, с которыми контактирует человек, по степени опасности (токсичности) подразделяют на четыре класса:

I.чрезвычайно опасные (чрезвычайно токсичные);

II.высокоопасные (высокотоксичные);

III.умеренно опасные (умеренно токсичные);

IV.низкоопасные (низкотоксичные).

Критерии классификации ксенобиотиков по степени их токсичности:

Значение величин LD 5 o или LC50;

Пути поступления (ингаляционно, через кожу);

Время воздействия;

Свойство разрушаться в окружающей среде или претерпевать превращения в живых организмах (биотрансформация).

Помимо токсичности и опасности всякое влияние ксенобиотика на объект можно охарактеризовать по некоторым особенностям его биологического действия:

По типу биологического воздействия на мишень

По показателям LD 5 o или LC50;

По видам токсичности и опасности

По избирательности действия ксенобиотиков (вещества могут быть токсичными для одних организмов и нетоксичными - для других);

По концентрационным пределам (пороговым значениям) токсического и/или опасного воздействия;

По характеру фармакологического действия (снотворные, нейролептики, гормональные и т. д.).


Похожая информация.


Лекарственные вещества и промышленные загрязнения, пестициды и продукты бытовой химии, пищевые добавки и консерванты - вот тот поток чужеродных соединений, который со всевозрастающей силой обрушивается на нашу планету и живущие на ней организмы.

Эти синтетические компоненты добавляются к огромному разнообразию чужеродных веществ природного происхождения, которые образуются растениями, грибами, бактериями и другими организмами. Недаром эти соединения получили название «ксенобиотики», т. е. «чуждые жизни ».

В столь острой ситуации все живое давно бы оказалось под угрозой гибели, если бы не обладало механизмами, неустанно поддерживающими свою «химическую чистоту». Организмы высших животных и человека в ответ на введение антигенов образуют антитела ц тем самым нейтрализуют их воздействие на организм. Однако антигенными свойствами, т. е. способностью вызывать образование антител, обладают только высокомолекулярные ксенобиотики - белки, гликопротеиды, некоторые полисахариды и нуклеиновые кислоты. А как же обезвреживаются ксенобиотики низкомолекулярные? Исследования показали, что такую функцию берет на себя цитохром Р-450-оксигеназная система, присутствующая в печени млекопитающих.

Недаром говорят о «барьерной» роли печени, которая является своеобразным фильтром, очищающим организм от вредных веществ. С помощью этой ферментной системы превращаются и тем самым обезвреживаются многие ядовитые для организма неполярные, а значит, нерастворимые в воде соединения - лекарственные вещества, наркотики и др. Задача этой системы - превращение нерастворимых соединений в растворимые в воде, с тем чтобы можно было вывести их из организма.

Цитохром Р-450 обнаружен у многих животных, растений и бактерий. Его нет у бактерий-анаэробов, живущих в бескислородных условиях.

А. И. Арчаков называет цитохром Р-450 «мембранным иммуноглобулином». Последний находится в мембранах эндоплазматического ретикулума. К 4980 г. было известно не менее 20 форм цитохрома Р-450. Множественность форм характерна именно для высших организмов, тогда как бактерии содержат лишь один тип цитохрома Р-450.

Существование множественных форм, вероятно, объясняет широкую субстратную специфичность оксигеназной системы, которая может окислять самые различные молекулы. Предполагается, что в ответ на введение в организм определенного класса ксенобиотиков синтезируется и определенная группа цитохрома Р-450, подобно тому как в ответ на введение макромолекулярного антигена возникают строго комплементарные к нему антитела.

Таким образом, в организме млекопитающих существуют две системы иммунологического надзора. Первая из них - лимфоидная система, уничтожающая клетки и высокомолекулярные соединения, вторая - монооксигеназная система, детоксицирующая ксенобиотики. Если первая иммунная система защищает организм от чужеродных макромолекул, то вторая - от чужеродных низкомолекулярных веществ. Предполагается, что иногда обе иммунологические системы действуют в совокупности. После окисления оксигеназной системой ксенобиотика его окисленная форма связывается с определенным белком. Образовавшийся коньюгат приобретает антигенные свойства и начинает вызывать образование антител. Роль коньюгазы опять-таки выполняет цитохром Р-450. Получается, что ксенобиотик, попадая в организм животного, индуцирует не только свое окисление, но и биосинтез соответствующих антител.

С помощью оксигеназной системы окисляются не только экзогенные ксенобиотики, но и ряд эндогенных (внутренних), образующихся в организме: стероидные гормоны, жирные кислоты, простагландины и др.

В печени млекопитающих существует еще одна система, помогающая им убирать из организма ксенобиотики. Это присоединение, или конъюгация, к различного рода лекарствам, ядам, наркотикам и другим соединениям глютатиона, в результате чего ксенобиотики обезвреживаются, а затем и выводятся из организма.

Однако в действии обезвреживающих систем бывают и осечки. Известны случаи, когда эти системы, стремясь обезвредить какое-нибудь токсическое вещество, превращают его в канцероген, т. е. в соединение, способное вызывать злокачественную опухоль.

Все, что сказано, относится к системам обезвреживания ксенобиотиков в организмах млекопитающих, где эти процессы усиленно исследовались и продолжают исследоваться, А как обстоит дело у растений? Вопрос далеко не праздный, поскольку именно растениям приходится в основном принимать на себя тот бесконечный поток чужеродных веществ, который сам человек и созданная им промышленность обрушивают на их поверхность. К сожалению, такие исследования если и проводились, то в крайне ограниченном количестве. А те сведения, которыми мы располагаем, в основном относятся к способности растительных тканей превращать гербициды (главным образом 2,4-дихлорфеиолуксусную кислоту), а также некоторые инсектициды. Даже знаменитый ДДТ в этом отношении до сих пор остается почти неисследованным, более того, существует мнение, что растения не в состоянии ею метаболизировать.

Однако те ограниченные сведения, которые все же имеются в литературе, позволяют заключить, что и у растений имеются системы детоксикации ксенобиотиков, напоминающие по своим свойствам оксигеназную систему микросом печени млекопитающих. В составе растений, принадлежащих к 20 видам, обнаружен цитохром Р-450, спектральные характеристики которого удивительно похожи на спектры соответствующих цитохромов из печени млекопитающих. В микросомах более чем 20 видов растений обнаружено наличие оксигеназной активности, способной превращать ряд ксенобиотиков. Эта ферментная система зависит от наличия липидного кофактора и подавляется теми же ингибиторами, что и оксигеназы из микросом печени. У растений присутствует также ряд ферментов, ответственных за присоединение к гербицидам глютатиона. Предполагают, что такой механизм обезвреживания может объяснить нечувствительность некоторых растений к гербицидам.

Получение прямых доказательств участия монооксигеназной системы в способности растений детоксицировать экзогенные и эндогенные ксенобиотики и тем самым поддерживать свой химический гомеостаз, нуждается в более пристальном внимании фитоиммунологов, чем то, которое до сих пор ему уделялось. Не исключено, что результаты этих исследований покажут, что растения на нашей планете функционируют не только как «зеленые легкие», образуя кислород в процессе фотосинтеза, но и как «зеленая печень», осуществляющая метаболизм ксенобиотиков и защищающая биосферу от загрязнения.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .



Похожие статьи