Определение характерных влажностей пылевато-глинистого грунта. Классификация песчаных и глинистых грунтов Чем характеризуется вид и состояние глинистых грунтов

1

В данной статье изложены результаты лабораторных исследований характеристик консистенции глинистых грунтов согласно российской и германской стандартным методикам, проведенных в институте механики грунтов Брауншвейгского технического университета. Рассмотрена проблематика разности в классификации глинистых грунтов и методик определения характеристик консистенции грунта согласно российским и германским нормативным стандартам. Проведен сравнительный анализ влияния характеристик консистенции на классификацию пылевато-глинистых грунтов по российским и германским стандартам. Установлено, что интервал пластичности в соответствии с немецкими нормами больше, чем интервал пластичности согласно отечественным стандартам для одного и того же грунта, поскольку влажность на границе текучести, определенная по DIN выше, чем влажность на границе текучести, определенная по ГОСТ. Выведена корреляционная зависимость между этими значениями верхнего предела пластичности.

консистенция

граница текучести

граница раскатывания

число пластичности

показатель текучести

1. ГОСТ 5180-84. Грунты. Методы лабораторного определения физических характеристик.

2. ГОСТ 25100-2011. Грунты. Классификация.

3. DIN 18121-1 (April 1998). Baugrund, Untersuchung von Bodenproben. Wassergehalt. Teil 1: Bestimmung durch Ofentrocknung.

4. DIN 18121-2 (August 2001). Baugrund, Untersuchung von Bodenproben. Wassergehalt. Teil 2: Bestimmung durch Schnellverfahren.

5. DIN 18122-1 (Juli 1997). Baugrund, Untersuchung von Bodenproben. Zustandsgrenzen (Konsistenzgrenzen). Teil 1: Bestimmung der Flieβ- und Ausrollgrenze.

6. DIN 18122-2 (September 2000). Baugrund, Untersuchung von Bodenproben. Zustandsgrenzen (Konsistenzgrenzen). Teil 2: Bestimmung der Schrumpfgrenze.

8. DIN ISO/TS 17892-12 (Januar 2005). Geotechnische Erkundung und Untersuchung – Laborversuche an Bodenproben – Teil 12: Bestimmung der Zustandsgrenzen.

В процессе интеграции инженерных школ и общности решаемых геотехнических задач на территории разных стран возникает вопрос о правильности применения тех или иных характеристик грунтов, используемых в геотехнических расчетах, определяемых по различным методикам, а также о трактовке полученных результатов.

Основой для описания и классификации грунтов как в отечественных, так и в зарубежных нормах являются физические характеристики, которые в силу дисперсности грунтов и исторических геотехнических традиций могут по-разному трактоваться в различных странах.

Поскольку дисперсность грунта оказывает значительное влияние на его пластичность, то по показателю пластичности I Р с определенной достоверностью можно характеризовать литологические разности глинистых грунтов. Это допущение и лежит в основе российской классификации. К супесям относятся грунты с I Р от 1 до 7 включительно, к суглинкам - от 7 до 17, к глинам - более 17.

В германских же стандартах существует несколько иная классификация. Согласно DIN глинистый грунт подразделяют на: суглинок, глину, суглинок с песком, глину с песком, т.е. нет выделения такой разновидности глинистого грунта, как супесь. Разновидность грунта определяется по графику пластичности (рис. 6). График представляет собой прямолинейную зависимость (А-линия), выраженную функцией I Р =0,73·(W L -20), где W L - в %. Значения I Р ≤ 4% или ниже А-линии характеризуют суглинок, значения I Р ≥ 7% и выше А-линии - глину. При этом, если значение W L менее 35% - слабопластичный грунт, если W L лежит пределах от 35% до 50% - среднепластичный грунт, если W L больше 50% - сильнопластичный грунт.

Для количественной оценки состояния консистенции грунта используется показатель текучести I L . В германских стандартах существует еще и показатель консистенции Ic , который является обратным показателю I L и используется как основной показатель для описания состояния консистенции грунта. Классификация грунтов по показателям текучести и консистенции представлена в таблицах 1 и 2.

Таблица 1

Значения I L для различных состояний консистенции глинистого грунта согласно ГОСТ

Состояние консистенции

Наименование грунта

Суглинок и глина

I L >1

I L >1

Пластичное

Текучепластичное

0,75<I L ≤1

0≤ I L ≤1

Мягкопластичное

0,5< I L ≤0,75

Тугопластичное

0,25< I L ≤0,5

Полутвердое

0≤ I L ≤0,25

I L <0

I L <0

Таблица 2

Значения I L и I c для различных состояний консистенции глинистого грунта согласно DIN

В немецких нормах текучепластичное состояние представлено большим интервалом по отношению к российским стандартам, что ведет к несоответствию остальных интервалов состояний консистенции. Для определения твердого состояния согласно DIN существует еще одна граница переходного состояния - граница перехода из полутвердого состояния в твердое Ws . Твердое состояние принимается, если значение I с больше, чем значение I с , соответствующее Ws , на графике зависимости I с /I L от влажности (рис. 1). Ws определяется согласно DIN по формуле:

V d - объем сухого грунта, см 3 ;

m d - масса сухого грунта, г;

ρ s - плотность частиц грунта, г/см 3 ;

ρ w - плотность воды, г/см 3 .

Рис. 1. Графическое представление классификации состояний глинистого грунта согласно немецким нормам

Отличие в классификации и разность методик определения характеристик консистенции могут давать и разные значения классификационных показателей, а, следовательно, и иное представление о данном грунте.

Для определения параметров консистенции и сравнения результатов был проведен ряд опытов в лаборатории института Механики грунтов Брауншвейгского технического университета по российской и германской технологиям. Характеристики консистенции определялись для двух видов глинистого грунта: суглинка текучего и глины полутвердой согласно классификации в соответствии с ГОСТ.

По российской технологии граница текучести была определена в соответствии с ГОСТ с помощью балансирного конуса (Васильева). Верхний предел пластичности соответствует такому состоянию грунта, при котором стандартный конус за 5 с погружается под действием собственного веса на глубину 1 см.

По германской методике для определения границы текучести использовались приборы Fließgrenzegerät согласно DIN и Fallkegelgerät согласно DIN.

Основным методом определения границы текучести в Германии является метод, описанный в DIN, с использованием прибора Fließgrenzegerät, но, поскольку этот метод во многом зависит от человеческого фактора, от правильности тарировки прибора и, кроме того, обладает большой трудоемкостью, в другом стандарте DIN предлагается заменить его на способ определения границы текучести с помощью прибора Fallkegelgerät.

Прибор Fließgrenzegerät представляет собой блок из твердой резины, на котором установлена чаша из медно-цинкового сплава с ударным устройством. Чаша заполняется грунтом, в котором нарезается борозда. Затем ударное устройство приводится в действие, и чаша быстро поднимается и опускается. Далее фиксируется число соударений, при которых борозда закрывается не менее чем на 1 см (рис. 2).

Рис. 2.Определение границы текучести в приборе Fließgrenze gerä t:

Таких испытаний проводится минимум 4 с постепенным высушиванием или доувлаженением грунта, после каждого опыта отбирается проба грунта массой 15-20 г для определения влажности и строится график зависимости количества ударов от влажности (рис. 3). График представляет собой прямую, по которой и определяется значение влажности на границе текучести, соответствующее 25 ударам.

Рис. 3.График зависимости количества ударов от влажности:

а, б - соответственно, для суглинка и глины согласно российской классификации по

При испытаниях с использованием прибора Fallkegelgerät, так же как и при испытаниях согласно ГОСТ, измеряется глубина, на которую конус погрузился за 5 с под действием собственного веса. Прибор представляет собой штатив, на котором установлены опускающийся конус, штангенциркуль для измерения осадки конуса, специальная чаша для проведения испытаний (рис. 4).

Рис. 4.Определение границы текучести в приборе Fallkegelgerä t:

а) до испытания, б) после испытания

Проводится не менее 4 испытаний с постепенным высушиванием или доувлажнением грунта. Строится график зависимости глубины погружения конуса от влажности, по которому и определяется граница текучести, соответствующая глубине погружения 20 мм (рис. 5).

Рис. 5. График зависимости глубины погружения конуса от влажности:

а, б - соответственно для суглинка и глины согласно российской классификации по

Влажность на границе раскатывания как по ГОСТ, так и по DIN определяется одинаково. Нижний предел пластичности соответствует такому состоянию грунта, при котором он начнет распадаться на мелкие кусочки, если раскатать его в шнур диаметром 3 мм.

Влажность грунта определялась эталонным методом как в соответствии с ГОСТ, так и в соответствии с DIN высушиванием до постоянной массы в сушильном шкафу при температуре 105°С. Существующие в германских стандартах экспресс-методы определения влажности, описанные в DIN, не применялись.

График пластичности представлен на рисунке 6.

Рис. 6. График пластичности:

* разновидность грунта в зависимости от I Р согласно российской классификации в соответствии с ГОСТ

ST - смесь глины с песком, SU - смесь суглинка с песком,

TL - слабопластичная глина, UL - слабопластичный суглинок,

TM - среднепластичная глина, UM - среднепластичный суглинок,

TA - сильноспластичная глина, UA - сильнопластичный суглинок;

Значения, полученные с использованием прибора Fallkegelgerät, соответственно, для суглинка и глины согласно российской классификации по ,

Значения, полученные при использовании прибора Fließgrenzegerät, соответственно, для суглинка и глины согласно российской классификации по .

Результаты и классификация сведены в таблицы 3 и 4.

Таблица 3

Полученные результаты испытаний для суглинка текучего согласно российской классификации по

Нормативный документ

Наименование грунта

ГОСТ 25100-2011

Суглинок текучий

DIN ISO/TS 17892-12

Глина слабопластичная в текучем состоянии

Глина слабопластичная в текучепластичном состоянии

Таблица 4

Результаты испытаний для глины полутвердой согласно российской классификации по

Нормативный документ

Наименование грунта

ГОСТ 25100-2011

Глина полутвердая

DIN ISO/TS 17892-12

Глина сильнопластичная в тугопластичном состоянии

Для сопоставления классификационных показателей, определяемых различными методиками и имеющих разные значения, в ГОСТ приведена корреляционная зависимость между границей текучести согласно международному стандарту (LL ) и границей текучести по ГОСТ (W L ):

LL =1,48·W L - 8,3 (2)

В результате проведенного анализа полученных данных функция зависимость между этими же стандартами имеет несколько другой вид:

LL =1,2·W L - 4,21 (3)

Однако аналогично полученная зависимость между DIN и ГОСТ очень близка к функции (2):

LL =1,47·W L -7,45 (4)

Следует учесть, что результаты получены на ограниченном количестве экспериментальных данных. Для более точных результатов необходимы дальнейшие расширенные исследования.

Основные выводы

  1. График пластичности, используемый в немецких нормах для классификации глинистого грунта, зависит от двух показателей: W L и I p , что дает возможность определить не только разновидность грунта, но и его способность проявлять пластичные свойства. Это способствует более точной оценке и классификации грунта. При этом отсутствует такая разновидность грунта, как супесь. Вместо этого на графике пластичности соответствующая область обозначена как смесь глины с песком либо смесь суглинка с песком.
  2. Влажность на границе текучести W L имеет различные значения в зависимости от того, согласно какому нормативному стандарту она определяется. Так, например, W L для глины согласно российской классификации по ГОСТ, определенная в соответствии с ГОСТ, меньше на 6,5 %, чем W L того же грунта, определенная по DIN, и на 16,2 % меньше, чем W L , определенная по DIN. Для суглинка согласно российской классификации по ГОСТ W L меньше на 1,7 % и на 5,6 % соответственно.
  3. Существенные отличия значений W L говорят о разной пластичности грунта I p , а следовательно, могут характеризовать один и тот же грунт по-разному. Кроме того, отличие показателя текучести I L и несоответствие классификации дают иное представление о состоянии грунта и, как следствие, о его характеристиках прочности и деформируемости и работе под действием нагрузок и воздействий в целом.

Рецензенты:

Миронов В.В., д.т.н., профессор, ФГБОУ ВПО ТюмГАСУ, г. Тюмень;

Чекардовский М.Н., д.т.н., профессор, заведующий кафедрой теплогазоводоснабжения и вентиляции, ФГБОУ ВПО ТюмГАСУ, г. Тюмень.

Библиографическая ссылка

Пронозин Я.А., Калугина Ю.А. СРАВНЕНИЕ ВЛИЯНИЯ ХАРАКТЕРИСТИК КОНСИСТЕНЦИИ НА КЛАССИФИКАЦИЮ ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ СОГЛАСНО РОССИЙСКИХ И ГЕРМАНСКИХ НОРМАТИВНЫХ СТАНДАРТОВ // Современные проблемы науки и образования. – 2015. – № 1-1.;
URL: http://science-education.ru/ru/article/view?id=19024 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Постройка дома на пылевато-глинистом грунте имеет свои особенности и требования. В этой статье вы узнаете о видах пылевато-глинистого грунта, их особенностях и типах фундаментов, которые можно закладывать на таком типе грунта.

Пылевато-глинистые грунты относятся к пучинистым грунтам и могут накапливать влагу. При низкой температуре влага замерзает (кристаллизируется) и превращается в лед, увеличиваясь в объеме. Этот процесс называется силой пучения, которая приподнимает дома, дает напряжение на нижние и боковые стены строения, разрушает некачественные кладки кирпича и блоков основания. В знойный период пучинистая почва оседает.

Виды пылевато-глинистых грунтов:

  • грубопесчаные и мелкопесчаные супеси (рыхлые горные породы).
  • суглинок (почва с преимущественным содержанием глины и значительным количеством песка).
№ п/п Виды грунта Содержит частиц, % Число пластичности, Jp Диаметр раскатываемого шнура из грунта, мм
1 Глины >30 >0,17 <1
2 Суглинок <10% От 0,07 до 0,17 1-3
3 Супесь от 10-30 От 0,01 до 0,07 >3
4 Песок <30 Не пластичный Не раскатывается

Примечание: Jр (число пластичности) определяется в лаборатории.

Глинистые частицы – активные компоненты, обладающие чешуйчатой формой. Они придают грунту связность, пластичность, набухаемость, липкость, водонепроницаемость.

Основные отличия связных и несвязных грунтов

Свойства грунтов Связные пылевато-глинистые грунты Пески (непучинистые материалы)
W (природная влажность грунта) колеблется от 3 до 600% от 0 до 40%
Состояния грунта Твердое, мягкое, текучее Сыпучее
Почва с ростом W Меняют свои свойства постепенно, есть время предотвратить аварию Мгновенное ухудшение свойств
По мере высыхания Оседает Не уменьшается в объеме и трескается
Утрамбовка почвы Медленно оседают (до 3 лет) Деформируются сразу после приложения нагрузки
Водопроницаемость Практически непроницаемы Пропускают влагу во всех состояниях

Возведение конструкций на пылевато-глинистом грунте

Пылевато-глинистый грунт является влагосодержащим, подвергается влиянию низкой температуры, увеличивается в объеме и поднимает фундаментные конструкции. Неравномерность подъема накапливается. Затем, конструкции подвергаются деформациям и разрушаются. Легкие малоэтажные помещения на таком грунте страдают больше всего.

Затратные фундаменты (глубокие монолитные конструкции) не рентабельны для постройки малоэтажных домов. Решить вопрос о возведении фундамента на пучинистом грунте можно с помощью мелкозаглубленных оснований (погруженность в грунт составляет 0,2-0,5 м) или незаглубленных фундаментов (на поверхности).

В отличие от заглубленного фундамента, заложенного в пучинистый грунт, мелкозаглубленные основания меньше подвержены касанию грунта. Незаглубленные фундаменты полностью защищены от вспучивания.

Конструирование малозаглубленных фундаментов

  • Ленточные фундаменты несущих стен и перегородок объединяются в сплошную горизонтальную раму, распределяющую нагрузки.
  • Столбчатые конструкции подразумевают формирование рамы из бетонных балок, жестко соединяющихся между собой на опорах.

Если пылевато-глинистый грунт не предполагает высокой степени вспучивания, то фундаментные детали устанавливаются свободно, не соединяясь между собой.

Имея дешевые стройматериалы (песок, гравий, щебенка, балласт) или скалистые грунты вблизи возведения фундамента, под основанием целесообразно сделать уплотняющий слой толщиной на 2/3 нормативной высоты замерзания.

На почве с глубиной замерзания до 1,7 на легковозводимых фундаментах можно строить небольшие здания из следующих стройматериалов:

  • дерева;
  • кирпича и камня;
  • монолитных панелей;
  • железобетонных блоков.

Использование мелкозаглубленных конструкций сокращает расход бетона на 50-80%, трудовые затраты — на 40-70%.

1. Материковый грунт

2. Бетонная отмостка

3. Слой гидроизоляции (рубероид)

4. Капиллярная гидроизоляция (ПЭ пленка)

5. Гумусный слой

6. Обратная засыпка

7. Забутовка из ПГС (пескогравийная смесь)

8. Ж/б лента фундамента

9. Арматура

Дренажная конструкция

  • Точечный или линейный водоотвод, направленный в канализацию. В период дождей или оттепели с поверхности, окружающей здание вода не будет накапливаться на участке.
  • Глубинный водоотвод. Установка подземной глубинной конструкции включает в себя водоприемник, дренажный колодец. Затем выкапывают траншею под закрытый коллектор, передающий воду из труб в водоприемник.
  • По периметру объекта устанавливают бетонные или асфальтные отмостки, толиной 1 м и наклоном 0,03.

В процессе гидроизоляции фундамента не следует проводить монтаж ввода системы водоподачи с нагорной стороны помещения. При эксплуатации конструкций не менять условия, проектирования быстровозводимых фундаментов.

Наружное вертикальное и горизонтальное утепление мелкозаглубленного фундамента

  • Касательное (боковое) утепление

Отмостка (полоса по периметру конструкции, обладающая прочной водонепроницаемой поверхностью) с утеплителем улучшают температурный режим в зоне фундамента, защищая здание от перепада температуры.

Тепловую изоляцию обеспечивают листы экструдированного пенополистирола (ЭПП) либо напыление пенополиуретаном.

  • Горизонтальное утепление

Под фундаментами организовываются уплотняющие почву подушки толщиной 20-30 см из крупного гравельного песка, щебенки или шлака. Они заменяют собой глинистый грунт на непучистый. Последний вариант влияет на снижение неравномерных деформаций здания. Глубина и высота слоя вычисляется по формулам, известным опытным технологам.

Пылевато-глинистые грунты относятся к пучинистым грунтам. Поэтому во время сезонных изменений они влияют на основание здания — поднимают фундамент или оседают, разрушая строение. Для строения на этом виде почвы применяют малозагубленные ленточные и столбчатые фундаменты.

]: скальные (грунты с жесткими связями) и нескальные (грунты без жестких связей).

ГОСТ 25100-95 Грунты. Классификация

В классе скальных грунтов выделяют магматические, метаморфические и осадочные породы, которые подразделяются по прочности, размягчаемости и растворимости в соответствии с табл. 1.4. К скальным грунтам, прочность которых в водонасыщенном состоянии менее 5 МПа (полускальные), относятся глинистые сланцы, песчаники с глинистым цементом, алевролиты, аргиллиты, мергели, мелы. При водонасыщении прочность этих грунтов может снижаться в 2—3 раза. Кроме того, в классе скальных грунтов выделяются также искусственные — закрепленные в естественном залегании трещиноватые скальные и нескальные грунты.

ТАБЛИЦА 1.4. КЛАССИФИКАЦИЯ СКАЛЬНЫХ ГРУНТОВ

Грунт Показатель
По пределу прочности на одноосное сжатие в водонасыщенном состоянии, МПа
Очень прочный R c > 120
Прочный 120 ≥ R c > 50
Средней прочности 50 ≥ R c > 15
Малопрочный 15 ≥ R c > 5
Пониженной прочности 5 ≥ R c > 3
Низкой прочности 3 ≥ R c ≥ 1
Весьма низкой прочности R c < 1
По коэффициенту размягчаемости в воде
Неразмягчаемый K saf ≥ 0,75
Размягчаемый K saf < 0,75
По степени растворимости в воде (осадочные сцементированные), г/л
Нерастворимый Растворимость менее 0,01
Труднорастворимый Растворимость 0,01—1
Среднерастворимый - || - 1—10
Легкорастворимый - || - более 10

Эти грунты подразделяются по способу закрепления (цементация, силикатизация, битумизация, смолизация, обжиг и др.) и по пределу прочности на одноосное сжатие после закрепления так же, как и скальные грунты (см. табл. 1.4).

Нескальные грунты подразделяют на крупнообломочные, песчаные, пылевато-глинистые, биогенные и почвы.

К крупнообломочным относятся несцементированные грунты, в которых масса обломков крупнее 2 мм составляет 50 % и более. Песчаные — это грунты, содержащие менее 50 % частиц крупнее 2 мм и не обладающие свойством пластичности (число пластичности I р < 1 %).

ТАБЛИЦА 1.5. КЛАССИФИКАЦИЯ КРУПНООБЛОМОЧНЫХ И ПЕСЧАНЫХ ГРУНТОВ ПО ГРАНУЛОМЕТРИЧЕСКОМУ СОСТАВУ


Крупнообломочные и песчаные грунты классифицируются по гранулометрическому составу (табл. 1.5) и по степени влажности (табл. 1.6).

ТАБЛИЦА 1.6. ПОДРАЗДЕЛЕНИЕ КРУПНООБЛОМОЧНЫХ И ПЕСЧАНЫХ ГРУНТОВ ПО СТЕПЕНИ ВЛАЖНОСТИ S r


Свойства крупнообломочного грунта при содержании песчаного заполнителя более 40 % и пылевато-глинистого более 30 % определяются свойствами заполнителя и могут устанавливаться по испытанию заполнителя. При меньшем содержании заполнителя свойства крупнообломочного грунта устанавливают испытанием грунта в целом. При определении свойств песчаного заполнителя учитывают следующие его характеристики — влажность, плотность, коэффициент пористости, а пылевато-глинистого заполнителя — дополнительно число пластичности и консистенцию.

Основным показателем песчаных грунтов, определяющим их прочностные и деформационные свойства, является плотность сложения. По плотности сложения пески подразделяются по коэффициенту пористости е , удельному сопротивлению грунта при статическом зондировании q с и условному сопротивлению грунта при динамическом зондировании q d (табл. 1.7).

При относительном содержании органического вещества 0,03 < I от ≤ 0,1 песчаные грунты называют грунтами с примесью органических веществ. По степени засоленности крупнообломочные и песчаные грунты подразделяют на незасоленные и засоленные. Крупнообломочные грунты относятся к засоленным, если суммарное содержание легко- и среднерастворимых солей (% от массы абсолютно сухого грунта) равно или более:

  • - 2 % — при содержании песчаного заполнителя менее 40 % или пылевато-глинистого заполнителя менее 30 %;
  • - 0,5 % — при содержании песчаного заполнителя 40 % и более;
  • - 5 % — при содержании пылевато-глинистого заполнителя 30 % и более.

Песчаные грунты относятся к засоленным, если суммарное содержание указанных солей составляет 0,5 % и более.

Пылевато-глинистые грунты подразделяют по числу пластичности I p (табл. 1.8) и по консистенции, характеризуемой показателем текучести I L (табл. 1.9).

ТАБЛИЦА 1.7. ПОДРАЗДЕЛЕНИЕ ПЕСЧАНЫХ ГРУНТОВ ПО ПЛОТНОСТИ СЛОЖЕНИЯ

Песок Подразделение по плотности сложения
плотный средней плотности рыхлый
По коэффициенту пористости
Гравелистый, крупный и средней крупности e < 0,55 0,55 ≤ e ≤ 0,7 e > 0,7
Мелкий e < 0,6 0,6 ≤ e ≤ 0,75 e > 0,75
Пылеватый e < 0,6 0,6 ≤ e ≤ 0,8 e > 0,8
По удельному сопротивлению грунта, МПа, под наконечником (конусом) зонда при статическом зондировании
q c > 15 15 ≥ q c ≥ 5 q c < 5
Мелкий независимо от влажности q c > 12 12 ≥ q c ≥ 4 q c < 4
Пылеватый:
маловлажный и влажный
водонасыщенный

q c > 10
q c > 7

10 ≥ q c ≥ 3
7 ≥ q c ≥ 2

q c < 3
q c < 2
По условному динамическому сопротивлению грунта МПа, погружению зонда при динамическом зондировании
Крупный и средней крупности независимо от влажности q d > 12,5 12,5 ≥ q d ≥ 3,5 q d < 3,5
Мелкий:
маловлажный и влажный
водонасыщенный

q d > 11
q d > 8,5

11 ≥ q d ≥ 3
8,5 ≥ q d ≥ 2

q d < 3
q d < 2
Пылеватый маловлажный и влажный q d > 8,8 8,5 ≥ q d ≥ 2 q d < 2

ТАБЛИЦА 1.8. ПОДРАЗДЕЛЕНИЕ ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ ПО ЧИСЛУ ПЛАСТИЧНОСТИ


Среди пылевато-глинистых грунтов необходимо выделять лёссовые грунты и илы. Лёссовые грунты — это макропористые грунты, содержащие карбонаты кальция и способные при замачивании водой давать под нагрузкой просадку, легко размокать и размываться. Ил — водонасыщенный современный осадок водоемов, образовавшийся в результате протекания микробиологических процессов, имеющий влажность, превышающую влажность на границе текучести, и коэффициент пористости, значения которого приведены в табл. 1.10.

ТАБЛИЦА 1.9. ПОДРАЗДЕЛЕНИЕ ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ ПО ПОКАЗАТЕЛЮ ТЕКУЧЕСТИ

ТАБЛИЦА 1.10. ПОДРАЗДЕЛЕНИЕ ИЛОВ ПО КОЭФФИЦИЕНТУ ПОРИСТОСТИ


Пылевато-глинистые грунты (супеси, суглинки и глины) называют грунтами с примесью органических веществ при относительном содержании этих веществ 0,05 < I от ≤ 0,1. По степени засоленности супеси, суглинки и глины подразделяют на незаселенные и засоленные. К засоленным относятся грунты, в которых суммарное содержание легко- и среднерастворимых солей составляет 5 % и более.

Среди пылевато-глинистых грунтов необходимо выделять грунты, проявляющие специфические неблагоприятные свойства при замачивании: просадочные и набухающие. К просадочным относятся грунты, которые под действием внешней нагрузки или собственного веса при замачивании водой дают осадку (просадку), и при этом относительная просадочность ε sl ≥ 0,01. К набухающим относятся грунты, которые при замачивании водой или химическими растворами увеличиваются в объеме, и при этом относительное набухание без нагрузки ε sw ≥ 0,04.

В особую группу в нескальных грунтах выделяют грунты, характеризуемые значительным содержанием органического вещества: биогенные (озерные, болотные, аллювиально-болотные). В состав этих грунтов входят заторфованные грунты, торфы и сапропели. К заторфованным относятся песчаные и пылевато-глинистые грунты, содержащие в своем составе 10—50 % (по массе) органических веществ. При содержании органических веществ 50 % и более грунт называется торфом. Сапропели (табл. 1.11) — пресноводные илы, содержащие более 10 % органических веществ и имеющие коэффициент пористости, как правило, более 3, а показатель текучести более 1.

ТАБЛИЦА 1.11. ПОДРАЗДЕЛЕНИЕ САПРОПЕЛЕЙ ПО ОТНОСИТЕЛЬНОМУ СОДЕРЖАНИЮ ОРГАНИЧЕСКОГО ВЕЩЕСТВА


Почвы — это природные образования, слагающие поверхностный слой земной коры и обладающие плодородием. Подразделяют почвы по гранулометрическому составу так же, как крупнообломочные и песчаные грунты, а по числу пластичности, как пылевато-глинистые грунты.

К нескальным искусственным грунтам относятся грунты, уплотненные в природном залегании различными методами (трамбованием, укаткой, виброуплотнением, взрывами, осушением и др.), насыпные и намывные. Эти грунты подразделяются в зависимости от состава и характеристик состояния так же, как и природные нескальные грунты.

Скальные и нескальные грунты, имеющие отрицательную температуру и содержащие в своем составе лед, относятся к мерзлым грунтам, а если они находятся в мерзлом состоянии от 3 лет и более, то к вечномерзлым.

Влажность грунтов определяют высушива­нием пробы грунта при температуре 105°С до постоянной массы. Отношение разности масс пробы до и после высушивания к массе абсо­лютно сухого грунта дает значение влажности, выражаемое в процентах или долях единицы. Долю заполнения пор грунта водой - степень влажности S r рассчитывают по формуле (см. табл. 1.3). Влажность песчаных грунтов (за исключением пылеватых) изменяется в неболь, ших пределах и практически не влияет на прочностные и деформационные свойства этих грунтов.

Характеристики пластичности пылевато-глинистых грунтов - это влажности на грани­цах текучести Wl и раскатывания ш Р, опреде­ляемые в лабораторных условиях, а также число пластичности /р и показатель текучести II, вычисляемые по формулам (см. табл. 1.3). Характеристики w L , w P и Ip являются косвен­ными показателями состава (гранулометриче­ского и минералогического) пылевато-глинис­тых грунтов. Высокие значения этих характе­ристик свойственны грунтам с большим содер­жанием глинистых частиц, а также грунтам, в минералогический состав которых входит монтмориллонит.

1.3. КЛАССИФИКАЦИЯ ГРУНТОВ

Грунты оснований зданий и сооружений подразделяются на два класса : скальные (грунты с жесткими связями) и нескальные (грунты без жестких связей).

В классе скальных грунтов выделяют маг­матические, метаморфические и осадочные по­роды, которые подразделяются по прочности, размягчаемости и растворимости в соответст­вии с табл. 1.4. К скальным грунтам, прочность которых в водонасыщенном состоянии менее 5 МПа (полускальные), относятся глинистые сланцы, песчаники с глинистым цементом, алевролиты, аргиллиты, мергели, мелы. При водонасыщении прочность этих грунтов может снижаться в 2-3 раза. Кроме того, в классе скальных грунтов выделяются также искусст­венные- закрепленные в естественном залега­нии трещиноватые скальные,и нескальные грунты. Эти грунты подразделяются по спо­собу закрепления (цементация, силикатизация,




битумизация, смолизация, обжиг и др.) и по нределу прочности на одноосное сжатие после закрепления так же, как и скальные грунты (см. табл. 1.4).

Нескальные грунты подразделяют на крупнообломочные, песчаные, пылевато-глинис­тые, биогенные и почвы.

■ К крупнообломочным относятся несцемен­тированные грунты, в которых масса обломков крупнее 2 мм составляет 50 % и более. Песча­ные - это грунты, содержащие менее 50 % частиц крупнее 2 мм и не обладающие свой­ством пластичности (число пластичности /р<


Свойства крупнообломочного грунта при содержании песчаного заполнителя более 40,% и пылевато-глинистого более 30 % опре­деляются свойствами заполнителя в могут устанавливаться по испытанию заполнителя. При меньшем содержании заполнителя свойст­ва крупнообломочного грунта устанавливают испытанием грунта в целом. При определении свойств песчаного заполнителя учитывают сле­дующие его характеристики - влажность, плотность, коэффициент пористости, а пылева­то-глинистого заполнителя - дополнительно число пластичности и консистенцию.



Основным показателем песчаных грунтов, определяющим их прочностные и деформаци­онные свойства, является плотность сложения. По плотности сложения пески подразделяются по коэффициенту пористости е, удельному со­противлению грунта при статическом зонди­ровании q c и условному сопротивлению грун­та при динамическом зондировании q& (табл. 1.7).

При относительном содержании органи­ческого вещества 0,03

0,5 % ■- при содержании песчаного запол­нителя 40 % и более;

Песчаные грунты относятся к засоленным, если суммарное содержание указанных солей составляет 0,5 % и более.

Пылевато-глинистые грунты подразделяют во числу пластичности h (табл. 1.8) и по кон-





систенции, характеризуемой показателем теку­чести 1 L (табл. 1.9). Среди пылевато-глинистых грунтов необходимо выделять лёссовые грунты и илы. Лёссовые грунты - это макропористые грунты, содержащие карбонаты кальция и спо­собные при замачивании водой давать под на­грузкой просадку, легко размокать и размы­ваться. Ил - водонасыщенный современный осадок водоемов, образовавшийся в результа­те протекания микробиологических процессов, имеющий влажность, превышающую влажность на границе текучести, и коэффициент пористо­сти, значения которого приведены в табл. 1.10.


Пылевато-глинистые грунты (супеси, су­глинки и глины) называют грунтами с приме­сью органических веществ при относительном содержании этих веществ 0,05

Среди пылевато-глинистых грунтов необ­ходимо выделять грунты, проявляющие специ­фические неблагоприятные свойства при зама­чивании: просадочные и набухающие. К про-садочным относятся грунты, которые под дей­ствием внешней нагрузки или собственного ве­са при замачивании водой дают осадку (про­садку), и при этом относительная просадоч-ность Ss/>0,01. К набухающим относятся грун­ты, которые при замачивании водой или хими­ческими растворами увеличиваются в объеме, и при этом относительное набухание без на­грузки e S ! »>0,04.

В особую группу в нескальных грунтах вы­деляют грунты, характеризуемые значитель­ным содержанием органического вещества: биогенные (озерные, болотные, аллювиально-болотные). В состав этих грунтов входят за-торфованные грунты, торфы и сапропели. К за-торфованным относятся песчаные и пылевато-глинистые грунты, содержащие в своем соста­ве 10-50 % (по массе) органических веществ. При содержании органических веществ 5Q % и




более грунт называется торфом. Сапропели (табл. 1.11)-пресноводные илы,-содержащие более 10 % органических веществ и имеющие коэффициент пористости, как правило, более 3, а показатель текучести более 1.

Почвы - это природные образования, слагающие поверхностный слой земной коры и обладающие плодородием. Подразделяют почвы по гранулометрическому составу так же, как крупнообломочные и песчаные грунты, а по числу пластичности, как пылевато-глинистые грунты.

К нескальным искусственным грунтам от­носятся грунты, уплотненные в природном за­легании различными методами (трамбованием, укаткой, виброуплотнением, взрывами, осуше­нием и др.), насыпные и намывные. Эти грун­ты подразделяются в зависимости от состава и характеристик состояния так же, как и при­родные нескальные грунты.


Скальные и нескальные грунты, имеющие отрицательную температуру и содержащие в своем составе лед, относятся к мерзлым грун­там, а если они находятся в мерзлом состой-нии от 3 лет и более, то к вечномерзлым.

1.4. ДЕФОРМИРУЕМОСТЬ ГРУНТОВ ПРИ СЖАТИИ

Характеристикой деформируемости грун­тов при сжатии является модуль деформаций, который определяют в полевых и лаборатор­ных условиях. Для предварительных расчетов, а также и окончательных расчетов оснований зданий и сооружений II и III класса допуска­ется принимать модуль деформации по табл. 1.12 и 1.13.



Модуль деформации определяют испыта­нием грунта статической нагрузкой, передавае­мой на штамп . Испытания проводят в шур­фах жестким круглым штампом площадью


5000 см 2 , а ниже уровня грунтовых вод и на больших глубинах - в скважинах штампом площадью 600 см 2 . Для определения модуля деформации используют график зависимости осадки от давления (рис. 1.1), на котором вы­деляют линейный участок, проводят через него осредняющую прямую и вычисляют модуль де­формации Е в соответствии с теорией линей­но-деформируемой среды по формуле

При испытании грунтов необходимо, что­бы толщина слоя однородного грунта под штампом была не менее двух диаметров штампа.

Модули деформации изотропных грунтов можно определять в скважинах с помощью прессиометра (рис. 1.2) . В результате ис­пытаний получают график зависимости прира­щения радиуса скважины от давления на ее стенки (рис. 1.3). Модуль деформации опреде­ляют на участке линейной зависимости дефор­мации от давления между точкой р\, соответ­ствующей обжатию неровностей стенок сква­жины, и точкой р2, после которой начинается интенсивное развитие пластических деформа­ций в грунте. Модуль деформации вычисляют

ПО ftlOnMVJlft

Коэффициент k определяется, как правило, путем сопоставления данных прессиометрии с результатами параллельно проводимых испы­таний того же грунта штампом. Для сооруже­ний II в III класса допускается принимать в зависимости от глубины испытания h следую­щие значения коэффициентов к в формуле (1.2): при ft<5 м 6 = 3; при 5мk = 2; при 10 м

Для песчаных и пылевато-глинистых грун­тов допускается определять модуль деформа­ции" на основе результатов статического и ди­намического зондирования грунтов. В качест­ве показателей зондирования принимают: при статическом зондировании - сопротивление грунта погружению конуса зонда q c , а при ди­намическом зондировании - условное динами, ческое сопротивление грунта погружению кону­са qa, Для суглинков и глин E-7q c и Я-6#<*; для песчаных грунтов E-3q c , а значения £ по данным динамического зондирования приведе­ны в табл. 1.14. Для сооружений I и II класса



является обязательным сопоставление данных зондирования с результатами испытаний тех же грунтов штампами. Для сооружений III класса допускается определять Е только по результатам зондирования.

1.4.2. Определение модуля деформации в лабораторных условиях

В лабораторных условиях применяют компрессионные приборы (одометры), в кото­рых образец грунта сжимается без возможно­сти бокового расширения. Модуль деформации вычисляют на выбранном интервале давлений Др = Р2-Pi графика испытаний (рис. 1.4) по формуле

Давление pi соответствует природному, а р2 - предполагаемому давлению под подош­вой фундамента.

Значения модулей деформации по компрес­сионным испытаниям получаются для всех грунтов (за исключением сильносжимаемых) заниженными, поэтому они могут использовать­ся для сравнительной оценки сжимаемости


грунтов площадки или для оценки неоднород­ности по сжимаемости. При расчетах осадки эти данные следует корректировать на основе сопоставительных испытаний того же грунта в полевых условиях штампом. Для четвертичных супесей, суглинков и глин можно принимать корректирующие коэффициенты т (табл. 1.16), при этом значения Еовц необходимо определять в интервале давлений 0,1-0,2 МПа.

1.5. ПРОЧНОСТЬ ГРУНТОВ

Сопротивление грунта срезу характеризу­ется касательными напряжениями в предель­ном состоянии, когда наступает разрушение грунта . Соотношение между предельными касательными т и нормальными к площадкам сдвига а напряжениями выражается условием прочности Кулона-Мора

1.5.1. Определение прочностных характеристик в лабораторных условиях

В практике исследований грунтов приме­няют метод среза грунта по фиксированной


плоскости в приборах одноплоскостного сре­за. Для получения <р и с необходимо провести срез не менее трех образцов грунта при раз­личных значениях вертикальной нагрузки. По полученным в опытах значениям сопротивле­ния срезу т строят график линейной зависимо­сти T = f(a) и находят угол внутреннего тре­ния ф и удельное сцепление с (рис. 1.5). Раз-

личают две основные схемы опыта: медленный срез предварительно уплотненного до полной консолидации образца грунта (консолидиро-ванно-дренированное испытание) и быстрый срез без предварительного уплотнения (некой-солидированно-недренированное испытание).

Глав-а 2. ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИЕ ИЗЫСКАНИЯ

5. Песчаные грунты состоят из частиц зерен кварца и других минералов крупностью от 0,1 до 2 мм, содержащие глины не более 3% и не обладают свойством пластичности. Пески разделяют по зерновому составу и размеру преобладающих фракций на гравелистые лески d>2 мм, крупные d>0,5 мм, средней крупности d>0,25 мм,мелкие d>0,1 мм и пылеватые d=0,05 - 0,005 мм.

Частицы грунта крупностью от d=0,05 - 0,005 мм называют пылеватыми . Если в песке таких частиц от 15 до 50 %, то их относят к категории пылеватых . Когда в грунте пылеватых частиц больше, чем песчаных, грунт называют пылеватым .

Чем крупнее и чище пески, тем большую нагрузку может выдержать слой основания из него. Сжимаемость плотного песка невелика, но скорость уплотнения под нагрузкой значительна, поэтому осадка сооружений на таких основаниях быстро прекращается. Пески не обладают свойством пластичности.

Гравелистые , крупные и средней крупности пески значительно уплотняются под нагрузкой, незначительно промерзают.

Тип крупнообломочных и песчаных грунтов устанавливается по гранулометрическому составу, разновидность – по степени влажности.

Глинистые – связные грунты, состоящие из частиц крупностью менее 0,005 мм, имеющих в основном чешуйчатую форму, с небольшой примесью мелких песчаных частиц. В отличие от песков глины имеют тонкие капилляры и большую удельную поверхность соприкосновения между частицами. Так как поры глинистых грунтов в большинстве случаев заполнены водой, то при промерзании глины происходит ее пучение.

Глинистые грунты делятся в зависимости от числа пластичности на глины (с содержанием глинистых частиц более 30%), суглинки (10...30%) и супеси (З...10%).

Несущая способность глинистых оснований зависит от влажности, которая определяет консистенцию глинистых грунтов. Сухая глина может выдерживать довольно большую нагрузку.

Тип глинистого грунта зависит от числа пластичности, разновидность – от показателя текучести.

Классификация грунтов по величине частиц.

6. По крупности минеральных частиц грунта, их взаимной связи и механической прочности грунты делят на пять классов: скальные, полускальные, крупнообломочные, песчаные (несвязные) и глинистые (связные).

К скальным грунтам относятся сцементированные водоустойчивые и практически несжимаемые породы (граниты, песчаники, известняки и т. п.), залегающие обычно в виде сплошных или трещиноватых массивов.

К полускальным грунтам относятся сцементированные породы, способные к уплотнению (мергели, алевролиты, аргиллиты и т. п.) и неводостойкие (гипс, гипсоносные конгломераты).

Крупнообломочные грунты состоят из несцементированных кусков скальных и полускальных пород; обычно содержат более 50 % обломков пород размером свыше 2 мм.


Песчаные грунты состоят из несцементированных частиц пород размером 0,05...2 мм; представляют собой, как правило, естественно разрушившиеся и преобразованные в различно степени скальные грунты; не обладают пластичностью.

Глинистые грунты также являются продуктом естественного разрушения и преобразования первичных горных пород, составляющих скальные грунты, но с преобладающим размером частиц менее 0,005 мм.

Классификация песчаных грунтов по степени влажности.

7. КРУПНООБЛОМОЧНЫе И ПЕСЧАНЫе ГРУНТЫ ПО СТЕПЕНИ ВЛАЖНОСТИ ПОДРАЗДЕЛЯЮТСЯ.



Похожие статьи