Простой стрелочный омметр своими руками. Электронный омметр «на скорую руку

Начинающим радиолюбителя можно рекомендовать изготовить не сложный прибор, наиболее часто используемым при ремонте или настройки радиотехнических устройств. Авометр объединяет в себе много­предельные амперметр и вольтметр по­стоянного и переменного тока, омметр, а иногда еще и испытатель маломощ­ных транзисторов.

Принципиальная схема подобного упрощенного измерительного при­бора показана на рис. ниже. Он позволя­ет измерять постоянные токи до 100мА, постоянные напряжения до 30 В и со­противления от 50 Ом до 50 кОм. Пе­реключение видов и пределов измере­ния осуществляется включением одного из щупов в гнезда Гн1-Гн10. Второй щуп, вставленный в гнездо Гн11 «Общ.», общий для всех видов и пре­делов измерения.

Омметр однопредельный. В него вхо­дят: микроамперметр ИП1, источник питания Э1 напряжением 1,5 В и добавочные рези­сторы R1 «Уст. 0» и R2. Перед изме­рением щупы прибора соединяют, и пе­ременным резистором R1 стрелку мик­роамперметра устанавливают на конеч­ную отметку шкалы, являющуюся ну­лем омметра. Затем щупами касаются выводов резистора, обмотки трансформа­тора или проводников участка цепи, сопротивление которых надо измерить, и по шкале омметра определяют ре­зультат измерения.

Четырехпредельный вольтметр обра­зуют тот же микроамперметр ИП1 и добавочные резисторы R3-R6. С ре­зистором R3 (при включении второго Щупа в гнездо Гн2) отклонение стрел­ки микроамперметра на всю шкалу соответствует напряжению 1 В, с ре­зистором R4-3 В, с резистором R5- 10 В, с резистором R6-30 В.

Миллиамперметр пятипредельный: 0-1, 0-3, 0-10, 0-30 и 0-100 мА. Его образует универсальный шунт составленный из резисторов R7-R11, к которому кнопкой Кн1 подключают микроамперметр ИП1. Так сделано для того, чтобы при измерении микро­амперметр подключался к шунту, через который течет большая часть измеряе­мого тока, а не наоборот.

Конструкция рекомендуемого комби­нированного измерительного прибора показана на рис. Микроамперметр типа М49 на ток полного отклонена стрелки 300 мкА с сопротивлением рам­ки 300 Ом. Переменный резистор R1 (СПО-0,5), кнопка КН (КМ1-1) и все гнезда прибора укреплены непосредст­венно на лицевой панели, выпиленной из листового текстолита толщиной 2 мм. Роль гнезд Гн1-Гн11 выполняет гнездовая часть десятиконтактного разъема. Низкоомные резисторы R9-R11 типа МОИ (или проволочные), остальные МЛТ на мощность рассеяния 0,5 или 0,25 Вт. Необходимые сопро­тивления резисторов подбирают при налаживании путем их замены, параллельным или последовательным соеди­нением нескольких резисторов. В опи­сываемом приборе каждый из резисто­ров R3 и R6, например, составлен из двух последовательно соединенных ре­зисторов, каждый из резисторов R5 и R11 также из двух резисторов, но со­единенных параллельно.

Калибровка вольтметра и миллиам­перметра заключается в подгонке со­противлений добавочных резисторов и универсального шунта под максималь­ные напряжения и токи соответствую­щих пределов измерения, а омметра - к разметке шкалы по образцовым ре­зисторам.

Калибровку вольтметра производите по схеме, показанной на рис. Па­раллельно батарее Б1 напряжением 13,5 В (или от БП) подключите пе­ременный резистор Rp сопротивлением 2-3 кОм, который будет выполнять роль регулировочного, а между его движком и нижним (по схеме) выво­дом,- параллельно соединенные само­дельный калибруемый (V K) и образ­цовый (V 0) вольтметры. Образцовым может быть вольтметр заводского аво­метра. Предварительно движок регу­лировочного резистора поставьте в край­нее нижнее (по схеме) положение, а калибруемый вольтметр включите на первый предел измерений - до 1 В. Постепенно увеличивая напряжение, по­даваемое от батареи на вольтметры, установите на них по образцовому вольтметру напряжение, точно равное 1 В. Если при этом стрелка калибруе­мого вольтметра не доходит до ко­нечной отметки шкалы, это укажет на то, что сопротивление добавочного ре­зистора R3 оказалось больше, чем на­до, а если уходит за пределы шкалы, то - меньше. Подбирая этот резистор, добейтесь, чтобы при напряжении 1 В стрелка вольтметра устанавливалась точно против конечной отметки шкалы.

Точно так же, но при напряжениях 3 и 10 В, фиксируемых образцовым вольтметром, подгоняйте добавочные резисторы R4 и R5 следующих двух пределов измерений. Для калибровки четвертого предела измерений не обя­зательно подавать на вольтметры на­пряжение 30 В. Можно подать 10 В и подбором резистора R6 установить стрелку калибруемого вольтметра на отметку, соответствующую первой третьей части шкалы. При этом откло­нение его стрелки на всю шкалу будет соответствовать напряжению 30 В.

Для калибровки миллиамперметра потребуются: миллиамперметр на ток до 100 мА, свежий элемент 343 или 373 и два переменных резистора - пленочный (СП, СПО) сопротивлением 5-10 кОм и проволочный сопротивле­нием 50-100 Ом. Первый из этих ре­гулировочных резисторов будете ис­пользовать при подгонке резисторов R7-R9, второй - при подгонке рези-, сторов R10 и R11 универсального шунта.

Первым подгоняйте резистор R7 шунта. Для этого соедините последо­вательно (рис. б): образцовый мил­лиамперметр мА 0 , калибруемый мА к, включенный на первый предел изме­рений (до 1 мА), элемент Э1 и пере­менный резистор R p . Нажмите кнопку Кн1 «/» (см. рис. 17) авометра и, плавно уменьшая вводимое сопротивле­ние регулировочного резистора R v , ус­тановите в цепи ток, равный 1 мА. Сопротивление резистора R7 должно быть таким, чтобы при таком токе в цепи стрелка калибруемого миллиам­перметра была против конечной отмет­ки шкалы.

Аналогично подгоняйте: резистор R8 - на пределе 3 мА, резистор R9- на пределе 10 мА, а затем, заменив пленочный регулировочный резистор проволочным, резистор R10 - на пре­деле 30 мА и, наконец, резистор R11- на пределе 100 мА. Подбирая сопро­тивление очередного резистора шунта, уже подогнанные не трогайте - можно сбить калибровку прибора на первых пределах измерения.

Разметить шкалу омметра проще всего с помощью постоянных резисто­ров с допуском от номинала ±5%. Делайте это так. Сначала замкните Щупы и регулировочным резистором R1 «Уст. О» установите стрелку микро­амперметра на конечную отметку шкалы, соответствующую нулю омметра. За­тем разомкните щупы и подключайте к ним резисторы с номинальными со­противлениями: 50, 100, 200, 300, 400, 500 Ом, 1 «Ом и т. д. примерно до 50-60 кОм, замечая всякий раз на шкале точку, до которой отклоняется стрелка прибора. И в этом случае ре­зисторы нужных сопротивлений со­ставляйте из резисторов других номи­налов. Например, резистор сопротивле­нием 40 Ом можно составить из двух резисторов по 20 Ом, резистор на 50 кОм из резисторов сопротивлением 20 и 30 кОм. По точкам отклонений стрелки, соответствующим разным со­противлениям образцовых резисторов, размечайте (градуируйте) шкалу ом­метра.

Шкалы самодельного комбинирован­ного измерительного прибора должны иметь вид, показанный на рис.

Верхняя из них - шкала омметра, нижняя - общая шкала вольтметра и миллиамперметра. Их надо возможно точнее начертить на плотной лакиро­ванной бумаге по форме шкалы микро­амперметра. Затем осторожно извлечь магнитоэлектрическую систему прибора из корпуса и наклеить новую шкалу, точно совместив дугу шкалы омметра с прежней шкалой. Чтобы не разби­рать микроамперметр, шкалы самодель­ного прибора можно начертить на плотной бумаге в соответствующем масштабе прямолинейными и наклеить ее на лицевую или переднюю боковую стенку ящика прибора.

В описанном комбинированном при­боре использован микроамперметр на ток I и =300 мкА с сопротивлением рамки Rи, равным 300 Ом. При таких параметрах микроамперметра относи­тельное входное сопротивление вольт­метра не превышает 3,5 кОм/В. Увели­чить относительное входное сопротив­ление и тем самым уменьшить влияние вольтметра на режим в измеряемой це­пи можно только использованием бо­лее чувствительного микроамперметра. Так, например, с микроамперметром на ток I=200 мкА относительное вход­ное сопротивление вольтметра будет 5, а с микроамперметром на ток I =100мка — 10кОм/В. С такими приборами расширится и предел измерения омметром. Но при замене микроамперметра более чувствительным надо с учетом его параметров I и К пересчитать сопротивление всех сопротивлений авометра.

Таким способом можно проверить или откалибровать любой стрелочный или цифровой вольтметр (амперметр). В качестве образцового рекомендуется использовать цифровой прибор заводского исполнения.

Такой прибор можно также положить в бардачок автомобиля. В поездке он может пригодиться для отыскания повреждений электропроводки, не годных ламп, соответствия бортового напряжения автомобиля.

Литература: В.Г.Борисов. Радиотехнический кружок и его работа.

А.Зотов


П О П У Л Я Р Н О Е:

    Как проверить лампочку, выключатель, предохранитель…?

    Для проверки предохранителя, электрической лампочки накаливания, кипятильника, удлинителя и т.п. совсем необязательно покупать дорогой мультиметр. Можно самому за несколько минут собрать простейший пробник на одной батарейке.


Наука начинается с умения измерять.
Д.И.Менделеев

В практике радиолюбителя приходится встречаться с необходимостью измерения низкоомных сопротивлений (до 1 Ом). Решить эту задачу и предназначен простой миллиомметр. Этим устройством можно с достаточной для радиолюбителя точностью измерять сопротивления от 0,0001 до 1 Ома.
При измерении малых сопротивлений с помощью цифровых мультиметров последовательно с измеряемым сопротивлением, назовём его Rx, неизбежно включено сопротивление соединительных проводов, переходное сопротивление входных клемм или гнёзд, контактов переключателя и т.п. Это сопротивление (Rпр.) находится в пределах 0,1…0,4 Ом. Вследствие вышеуказанных причин, реально измеренное сопротивление будет больше Rx на некоторую величину (Rx+Rпр.). Погрешность может доходить до 50 % при измерении очень малых сопротивлений. Для больших сопротивлений эта ошибка невелика, и её можно не учитывать.
Из изложенного понятно, что надо исключить влияние соединительных проводов и т.п. на результат измерения очень малых сопротивлений. Существует метод измерения низкоомных сопротивлений по 4-зажимной схеме на постоянном токе. Применение данного метода полностью исключает влияние соединительных проводов на результат измерения малых сопротивлений. Этот метод используется в данном миллиомметре. Кратко рассмотрим суть метода измерения по 4-зажимной схеме.


Рисунок 1

На рис.1 (слева) приведена схема измерения сопротивления по 2-зажимной схеме. Красным цветом показан путь измерительного тока. Как видим, ток протекает и через измеряемый резистор и через сопротивление проводов (Rпр) мультиметра, что вносит погрешность в результат измерения. Сопротивление вольтметра не оказывает влияния на измерение Rx, так как обладает очень большим (до 10 МОм) внутренним сопротивлением Rвх. На рис.1 (справа) показана 4-зажимная схема измерения. Из схемы понятно, что сопротивление проводов не оказывает влияния на результат измерения, так как включено последовательно с очень большим внутренним сопротивлением вольтметра. Измерительный ток протекает только через резистор Rx.

Вот схема миллиомметра (рис.2).


Рисунок 2

Источником питания схемы является батарея с напряжением 9 В. Выключателем SB напряжение от батареи подаётся на микросхему стабилизатора напряжения типа 7806. Конденсатор С1 служит для подавления скачков напряжения. Резисторы R1, VR2 необходимы для установки выходного напряжения микросхемы в пределах 6 В. Потенциометром VR2 устанавливается точная величина выходного напряжения величиной 6В. Потенциометром VR3 устанавливается выходной ток, протекающий через измеряемый резистор Rx равный 100мА (0,1 А). Поскольку резистор VR3 имеет относительно большое сопротивление по сравнению с измеряемым Rx, то погрешность, возникающая при этом вследствие наличия сопротивлений Rx (от 1 мОм до 1 Ом), будет оказывать влияние на величину тока 100мА в пределах не более 2%.

Конструкция миллиомметра
Внешний вид и вид на монтаж деталей миллиомметра показан на фото 1, 2 и 3. Монтаж деталей выполнен навесным способом, микросхема на радиатор не устанавливалась. В качестве потенциометров VR2, VR3 использованы многооборотные резисторы для более точной установки напряжения и тока. Корпус прибора пластмассовый, размеры 11*6*4 см. Клеммы К1 иК2 металлические. Выключатель питания типа МТ-1.


Фото 1



Фото 2



Фото 3

Подготовка к измерению сопротивления
Подсоединить щупы цифрового вольтметра к клеммам К1 и К2. Подать напряжение от источника питания на схему, включив выключатель SB. Потенциометром VR2 установить выходное напряжение величиной 6 В при неподключённом резисторе Rx. Далее, отключив SB, переключаем мультиметр на измерение тока (щупы остаются на прежнем месте), включаем SB и потенциометром VR3 устанавливаем величину выходного тока 0,1А.


Фото 4



Фото 5

Проведение измерений
Для начала возьмём несколько резисторов известной величины (0,1; 0,2; 0,5 Ом) и измерим их сопротивление, чтобы убедиться в работоспособности миллиомметра.


Фото 6

Не включая питание под клеммы К1 и К2, зажимаем выводы измеряемого сопротивления. Щупы цифрового вольтметра устанавливаем в гнёзда клемм К1 и К2, а предел измерения на отметку 200мВ. Включаем питание и считываем показания прибора.


Фото 7

Допустим, величина измеренного напряжения 22,3 мВ. Ток ранее был установлен 100мА. Делим напряжение на ток и получаем искомое сопротивление. В нашем случае: Rx=22,3: 100= 0,223 Ом. Конечно, принято делить вольты на амперы, чтобы получить Омы, но так удобнее, не надо переводить мВ и мА в вольты и амперы. Точно также измеряем другие эталонные резисторы. Но всё-таки вспомним, что 1 В-1000мВ; 100мВ-0,1В; 10мВ-0,01В; 1мВ-0,001В; 1А-1000мА; 100мА-0,1А. В моём мультиметре наименьший предел измерения - 200мВ, цена деления - 0,1 мВ. Входное сопротивление - около 10 МОм. То есть теоретически можно измерить сопротивление величиной 0,001 Ом (1мОм). Вольтметры с низким входным сопротивлением для наших измерений не годятся.
Итак, мы определили, что проведенные измерения дали реальный результат. Теперь переходим к измерению неизвестного сопротивления. В качестве неизвестных сопротивлений будем использовать шунты из разобранных авометров. При измерении сопротивления самого большого шунта падение напряжения составило 0,5 мВ, ток 100 мА.


Фото 8

Величина сопротивления шунта, рассчитанная по закону Ома, получилась 0,005 Ом. Сопротивление малого шунта, измеренного миллиомметром, равно 0,212 Ом (падение напряжения - 21,2 мВ).
Практическое применение миллиомметр может найти при подборе шунтов для зарядных устройств, измерении сопротивлений в оконечных каскадах усилителей низкой частоты и других устройств, где необходимо измерение малых сопротивлений (переходное сопротивление контактов выключателей, реле и др.).
Измерение низкоомных сопротивлений можно производить и при токах более 0,1 А. Для этого необходимо собрать стабилизатор тока на соответствующий ток. Схемы стабилизаторов приведены на рис.3.


Рисунок 3

Стабилизатор включается в схему вместо потенциометра VR3. Конечно, это повлечёт за собой установку микросхемы и транзистора на радиаторы соответствующего размера, а также к увеличению размеров прибора.
Сопротивления менее 1мОм (1000 мкОм) измеряют с помощью микроомметров. Измерительный ток может быть величиной до 150 А. Напряжение большой роли не играет.
Если необходимо изготовить шунт для зарядного устройства, а нихрома, константана, манганина нет, то можно воспользоваться шпилькой подходящего диаметра, как показано на фото 9.


Фото 9

Материал шпильки - сталь, бронза, медь и т.п. Передвигая один из контактов по шпильке добиваются нужного сопротивления шунта. Расчёт сопротивления шунта несложен. Будут вопросы - обсудим.

Традиционные омметры с нелинейной шкалой не позволяют произвести даже приблизительно точный отсчет измеряемого сопротивления, особенно на краях шкалы. Удобнее пользоваться прибором с линейной шкалой, а при изготовлении такого омметра отпадает необходимость градуировки и рисования шкалы, так как остается прежняя шкала стрелочного прибора.
Работа омметра с линейной шкалой основана на принципе операционного усилителя (ОУ), согласно которому при подаче обратной связи на инвертирующий вход ОУ коэффициент передачи напряжения равен отношению сопротивлений Rx. к R0, где Rx – сопротивление между выходом ОУ и
инвертирующим входом, a R0 – сопротивление между инвертирующим входом и общей шиной. В связи с тем что на не-инвертирующий вход подано постоянное напряжение U0, падение напряжения на резисторе составляет U0 Rx/R0, то есть пропорционально измеряемому сопротивлению. Принципиальная схема омметра приведена на рисунке.

Здесь U0 -напряжение стабилитрона VD1, а R0 – сопротивление одного из включенных образцовых резисторов R1-R5. Чтобы не нагружать ОУ при измерении малых сопротивлений, измерительная цепь подключена к выходу ОУ через эмиттерный повторитель, собранный на транзисторе VT1. Падение напряжения на измеряемом резисторе Rx измеряется вольтметром, образованным микроамперметром РА1 и добавочными резисторами R8 и R9. Таким образом, при Rx – R0 к вольтметру подводится напряжение, равное U0 и составляющее 3,9 В, и его стрелка должна отклониться на всю шкалу. В зависимости от внутреннего сопротивления микроамперметра при налаживании прибора следует уменьшить сопротивление резистора R9, а переменным резистором R8 установить стрелку точно на последнее деление шкалы. В авторском варианте в схеме применен микроамперметр с током полного отклонения 100 мкА. Поэтому результат отсчета измеренного сопротивления по шкале следует или делить на два и умножать на коэффициент, соответствующий установленному пределу измерений, или считать его процентами от сопротивления образцового резистора. Удобнее установить микроамперметр с током полного отклонения 50 мкА, тогда показания делить на два не придется. Но при этом необходимо увеличить сопротивление резистора R9 до 75 кОм.
На рисунке показана печатная плата прибора с установленными на ней элементами схемы.

Образцовые резисторы R1-R5 необходимо подобрать достаточно точно по указанным на схеме сопротивлениям: от их допуска зависит точность измерения.

Related Posts

Постоянные магниты, применяемые в системах зажигания лодочных моторов, со временем утрачивают свои магнитные свойства. Магнето не может обеспечить необходимую мощность искры, что значительно усложняет запуск двигателя. Для намагничивания постоянного магнита…….

Прибор предназначен для проверки и восстановления кинескопов, а также других электронно-лучевых трубок и радиоламп. Он позволяет оценить ток эмиссии электронной пушки, проверить наличие межэлектродных замыканий и утечек в цепях катод…….

Радиомикрофон работает в диапазоне ЧМ – 65,8-74 МГц. Прием сигнала осуществляется с помощью любого УКВ-ра-диоприемника на расстоянии до 25 м. Его принципиальная схема показана на рисунке. Источником электрического сигнала служит…….

К такому выводу я пришел постепенно. А дело вот в чем. Для просмотра телепередач чаще всего используются активные комбинированные М В/ДМ В антенны (АКА) с уменьшенными размерами. Множество конструкций АКА…….

Омметр, который мы предлагаем построить радиолюбителям, отличается от большинства приборов такого рода тем, что имеет линейную шкалу. Этим омметром и пользоваться удобней, и налаживать его проще.

ОММЕТР С ЛИНЕЙНОЙ ШКАЛОЙ

Почему шкала омметра большинства измерительных приборов не линейная? Дело в том, что измеряемая цепь в таких приборах является частью делителя напряжения или плечом моста (при мостовой "схеме измерения) и ток через нее непостоянен - он зависит от сопротивления цепи. Причем зависимость эта нелинейная, что и определяет характер шкалы отсчета стрелочного индикатора прибора.

Другое дело, если через измеряемую цепь пропускать строго постоянный (по значению) ток и измерять падение напряжения на ней. Тогда согласно закону Ома падение напряжения будет прямо пропорционально сопротивлению цепи, а значит, шкала индикатора (в данном случае вочьтмет-ра) будет линейной.

Прежде чем рассказать о практической схеме омметра с линейной шкалой, познакомимся с его упрощенной схемой, приведенной на рисунке 1. На транзисторе Т собран стабилизатор тока. Поскольку напряжение на базу транзистора снимается с кремниевого стабилитрона Д, ток в цепи эмиттера будет стабилен и зависеть только от -сопротивления резистора R3. Стабильным будет и ток коллектора, протекающий через измеряемый резистор Rx с неизвестным сопротивлением. Поэтому

вольтметр ИП будет измерять напряжение, прямо пропорциональное сопротивлению подключаемых резисторов.

Выбор резистора Ra определяется возможными изменениями тока базы транзистора при установке различного тока эмиттера. А задаваемый ток эмиттера, в свою очередь, определяется выбранным пределом измерения. При малых значениях измеряемого сопротивления ток эмиттера выбирают большим, но не превышающим значения предельно допустимого тока для данного транзистора. Нижний предел тока эмиттера зависит от возможного минимального обратного тока коллектора (I к. о.) данного транзистора. Для измерения резисторов с большим сопротив тением нужио выбирать транзисторы с возможно ма лым значением тока I к. о. Кроме того, для предупреждения шунтирующего влияния вольтметра ИП его входное сопротивление должно быть значительно больше (по крайней мере, на порядок) предельного значения измеряемого сопротивления. Исходя из этих соображений и была выбрана практическая схема (рис. 2) омметра с линейной шкалой.

В качестве стабилизатора тока применен транзистор структуры п-р-п с обратным током коллектора не более 1 мкА. Значение

У радиолюбителей, особенно начинающих, большой популярностью пользуются омметры с линейной шка­лой, не требующие замены и градуировки шкалы стре­лочного индикатора. Сравнительно простая конструкция такого омметра была разработана на операционном усилителе. Омметр позволяет измерять сопротивления от 1 Ом до 1 МОм, что вполне достаточно для многих практических целей.

Принцип действия омметра на операционном усили­теле поясняет рис. 1. Измеряемый резистор R х вклю­чен в цепь обратной связи между выходом усилителя и его инвертирующим входом. В этой же цепи стоит и эталонный резистор R 3 . На неинвертируюший вход по­дается опорное напряжение от источника G 1. В таком режиме выходное напряжение операционного усилителя будет зависеть от соотношения сопротивлений R x и R 3 цепи обратной связи. Его и измеряет относительно опорного напряжения вольтметр PV , показания которо­го прямо пропорциональны сопротивлению R x .

Рис. 1. Функциональ­ная схема омметра с линейной шкалой

Принципиальная схема омметра приведена на рис. 2. Опорное напряжение + 2 В на неинвертирующем входе усилителя создается де­лителем из резистора R 10 и стаби­лизатора тока на транзисторе VI . Точное значение опорного напряже­ния подбирают переменным рези­стором R 12. Поскольку при измере­нии малых сопротивлений ток в измерительной цепи, а значит, и вы­ходной ток усилителя может пре­вышать допустимый для ОУ, в омметр введен эмиттерный повто­ритель на транзисторе V 3. Чтобы защитить стрелочный индикатор от перегрузок при слу­чайном увеличении выходного напряжения усилителя из­за неправильного положения переключателя S1, парал­лельно выводам индикатора подключен диод V 2,

Вольтметр состоит из миллиамперметра РА1 и ре­зисторов R 13, R 14. В показанном на схеме положении кнопки S 2 вольтметр рассчитан на измерение напряже­ний до 2 В. При замыкании контактов кнопки резистор R 14 шунтируется и вольтметр измеряет напряжение до 0,2 В.

Эталонные резисторы подключаются к инвертирую­щему входу ОУ переключателем S 1. Сопротивление эта­лонного резистора определяет поддиапазон измерений омметра. Так, при включении резистора R 1 прибором можно измерять сопротивления примерно от 100 кОм до 1 МОм. При следующем положении переключателя предельное измеряемое сопротивление может достигать 300 кОм, а при дальнейших положениях эти значения будут соответствовать 100 кОм, 30 кОм, 10 кОм, 3 кОм, 1 кОм, 300 Ом, 100 Ом. В итоге получается девять поддиапазонов измерения.

Благодаря кнопке S 2 пределы измеряемых сопро­тивлений можно уменьшить в 10 раз. Пользуются ею только на двух последних поддиапазонах. Таким обра­зом, к имеющимся поддиапазонам добавляются еще два: до 30 Ом и до 10 Ом.

Рис. 2. Принципиальная схема омметра с линейной шкалой

Чтобы более экономно расходовать энергию источника питания, его подключают к прибору кнопкой S3 только во время измерения.

Рис. 3. Размещение деталей на лицевой панели корпуса

Детали омметра размещены в небольшом корпусе. На съемной лицевой панели из гетинакса размерами 190 X 130 мм (рис. 3) укреплены индикатор, переклю­чатель поддиапазонов S 1 и кнопочные выключатели S 2, S3, резистор калибровки R 12 и зажимы для подключения источника питания и проверяемого резисто­ра (или другой детали, обладающей оммическим сопро­тивлением) .

Эталонные резисторы подпаяны непосредственно к лепесткам переключателя, а операционный усилитель и транзисторы смонтированы на плате из стеклотексто­лита (можно гетинакса) размерами 35 X 30 мм, кото­рую можно прикрепить, например, к лицевой панели с внутренней стороны.

Резисторы R 1 - R 9 могут быть МЛТ-0,125, МЛТ-0,25 или другие, подобранные с точностью ±1%, - от этого во многом зависит точность измерений. Перемен­ный резистор R 12 - СПЗ-4а или другой. Диод V 2 мо­жет быть, кроме указанного на схеме, Д226 с любым буквенным индексом или другой с прямым напряже­нием 0,3…0,6 В. Транзисторы любые из серий К.Т312, КТ315. Стрелочный индикатор может быть с током полного отклонения стрелки 1 мА и внутренним сопротив­лением 82 Ом. Тогда резистор RI 3 должен иметь со­противление 118 Ом, a R 14 - 1,8 кОм. Подойдет и ми­кроамперметр М24 с током полного отклонения стрел­ки 100 мкА и внутренним сопротивлением 783 Ом. (та­кой индикатор показан на рис. 3), он удобен тем, что имеет шкалу на 100 делений, облегчающую отсчет из­меряемых сопротивлений. Но в этом случае необходи­мо зашунтировать индикатор резистором сопротивле­нием около 92 Ом, чтобы стрелка индикатора отклоня­лась на конечное деление при токе 1 мА. Сопротивле­ния резисторов R 13, R 14 для такого варианта остаются неизменными. В случае же использования индикатора с другим внутренним сопротивлением придется пересчи­тать сопротивление резисторов так, чтобы с резистором R 14 стрелка индикатора отклонялась на конечное деле­ние шкалы при напряжении 0,2 В, а с последовательно соединенными резисторами R 13, R 14 - np и напряжении 2 В.

Налаживание прибора начинают с проверки правильности монтажа. Затем подключают к зажимам питания источник напряжением 9 В, например две по­следовательно соединенные батареи 3336Л. К зажимам «Rх» подключают выводы точно измеренного резисто­ра, например, сопротивлением 100 кОм. Движок пере­менного резистора R 12 устанавливают в среднее поло­жение, а ручку переключателя S 1 - в положение «.300 к». Только после этого нажимают кнопку S3. Стрелка индикатора должна отклониться примерно на треть шкалы. Добиваются этого переменным резисто­ром R 12 «Калибр». Затем переключателем устанавли­вают поддиапазон «100 к» и переменным резистором добиваются точного отклонения стрелки индикатора на конечное деление шкалы. Проверяют калибровку на других поддиапазонах, подключая к зажимам « Rx » ре­зисторы сопротивлением 30 кОм, 10 кОм, 3 кОм и так далее. При значительных расхождениях в показаниях индикатора и сопротивлении измеряемого резистора следует подобрать точнее соответствующий эталонный резистор.

Чтобы избегать зашкаливания стрелки индикатора при работе с омметром, нужно всегда начинать измерения в положении переключателя «1 М», а затем, по мере отклонения стрелки индикатора, постепенно переходить на другие поддиапазоны.



Похожие статьи