Проводимость материала частицы. Электрическая проводимость

Электронная проводимость металлов

В начале XX века была создана классическая электронная теория проводимости металлов (П. Друде, 1900 г., Х.Лоренц, 1904 г.), которая дала простое и наглядное объяснение большинства электрических и тепловых свойств металлов. Рассмотрим некоторые положения этой теории.

Свободные электроны

Металлический проводник состоит из:

1) положительно заряженных ионов, колеблющихся около положения равновесия, и

2) свободных электронов, способных перемещаться по всему объему проводника.

Таким образом, электрические свойства металлов обусловлены наличием в них свободных электронов с концентрацией порядка 1028 м–3, что примерно соответствует концентрации атомов. Эти электроны называются электронами проводимости. Они образуются путем отрыва от атомов металлов их валентных электронов. Такие электроны не принадлежат какому-то определенному атому и способны перемещаться по всему объему тела. В металле в отсутствие электрического поля электроны проводимости хаотически движутся и сталкиваются, чаще всего с ионами кристаллической решетки (рис. 1). Совокупность этих электронов можно приближенно рассматривать как некий электронный газ, подчиняющийся законам идеального газа. Средняя скорость теплового движения электронов при комнатной температуре составляет примерно 105 м/с.

Рисунок 1

Электрический ток в металлах

Ионы кристаллической решетки металла не принимают участие в создании тока. Их перемещение при прохождении тока означало бы перенос вещества вдоль проводника, что не наблюдается. Например, в опытах Э. Рикке (1901 г.) масса и химический состав проводника не изменялся при прохождении тока в течении года.

Экспериментальное доказательство того, что ток в металлах создается свободными электронами, было дано в опытах Л.И. Мандельштама и Н. Д. Папалекси (1912 г., результаты не были опубликованы), а также Т. Стюарта и Р. Толмена (1916 г.). Они обнаружили, что при резкой остановке быстро вращающейся катушки в проводнике катушки возникает электрический ток, создаваемый отрицательно заряженными частицами - электронами.

Следовательно, электрический ток в металлах - это направленное движением свободных электронов.

Так как электрический ток в металлах образуют свободные электроны, то проводимость металлических проводников называется электронной проводимостью.

Электрический ток в металлах возникает под действием внешнего электрического поля. На электроны проводимости, находящиеся в этом поле, действует электрическая сила, сообщающая им ускорение, направленное в сторону, противоположную вектору напряженности поля. В результате электроны приобретают некоторую добавочную скорость (ее называют дрейфовой). Эта скорость возрастает до тех пор, пока электрон не столкнется с атомом кристаллической решетки металла. При таких столкновениях электроны теряют свою избыточную кинетическую энергию, передавая ее ионам. Затем электроны снова разгоняются электрическим полем, снова тормозятся ионами и т.д.Средняя скорость дрейфа электронов очень мала, около 10–4 м/с.

Скорость распространения тока и скорость дрейфа не одно и то же. Скорость распространения тока равна скорости распространения электрического поля в пространстве, т.е. 3⋅108 м/с.

При столкновении с ионами электроны проводимости передают часть кинетической энергии ионам, что приводит к увеличению энергии движения ионов кристаллической решетки, а, следовательно, и к нагреванию проводника.

Сопротивление металлов

Сопротивление металлов объясняется столкновениями электронов проводимости с ионами кристаллической решетки. При этом, очевидно, чем чаще происходят такие столкновения, т. е. чем меньше среднее время свободного пробега электрона между столкновениями τ, тем больше удельное сопротивление металла.

В свою очередь, время τ зависит от расстояния между ионами решетки, амплитуды их колебаний, характера взаимодействия электронов с ионами и скорости теплового движения электронов. С ростом температуры металла амплитуда колебаний ионов и скорость теплового движения электронов увеличиваются. Возрастает и число дефектов кристаллической решетки. Все это приводит к тому, что при увеличении температуры металла столкновения электронов с ионами будут происходить чаще, т.е. время τ уменьшается, а удельное сопротивление металла увеличивается.

Опыт Мандельштама и Папалекси по выяснению движения электрона

Если электрон обладает массой, то его масса, или способность двигаться по инерции, должна проявляться повсюду, а не только в электрическом поле. Русские ученые Л. И. Мандельштам (1879-1949; основатель школы радиофизиков) и Н. Д. Папалекси (1880 - 1947; крупнейший советский физик, академик, председатель Всесоюзного научного совета по радиофизике и радиотехнике при АН СССР) в 1913 году поставили оригинальный опыт. Взяли катушку с проводом и стали крутить ее в разные стороны.

Раскрутят, к примеру, по часовой стрелке, потом резко остановят и - назад.

Рассуждали они примерно так: если электроны и вправду обладают массой, то, когда катушка внезапно останавливается, электроны еще некоторое время должны двигаться по инерции. Движение электронов по проводу - электрический ток. Как задумали, так и получилось. Подсоединили к концам провода телефон и услышали звук. Раз в телефоне слышен звук, следовательно, через него ток протекает.

Опыт Мандельштама и Папалекси в 1916 году повторили американские ученые Толмен и Стюарт. Они тоже крутили катушку, но вместо телефона к ее концам подсоединили прибор для измерения заряда. Им удалось не только доказать существование у электрона массы, но и измерить ее. Данные Толмена и Стюарта потом много раз проверялись и уточнялись другими учеными, и теперь вы знаете, что масса электрона равна 9,109 Ю-31 килограмма.

При постановке этих опытов исходили из следующей мысли. Если в металле есть свободные заряды, обладающие массой, то они должны подчиняться закону инерции, Быстро движущийся, например, слева направо проводник представляет собой совокупность движущихся в этом направлении атомов металла, которые увлекают вместе с собой и свободные заряды. Когда такой проводник внезапно останавливается, то останавливаются входящие в его состав атомы; свободные же заряды по инерции должны продолжать движение слева направо, пока различные помехи (соударения с остановившимися атомами) не остановят их. Происходящее явление подобно тому, что наблюдается при внезапной остановке трамвая, когда «свободные», не прикрепленные к вагону предметы и люди по инерции некоторое время продолжают двигаться вперед.

Таким образом, краткое время после остановки проводника свободные заряды в нем должны двигаться в одну сторону. Но движение зарядов в определенную сторону есть электрический ток. Следовательно, если наши рассуждения справедливы, то после внезапной остановки проводника надо ожидать появления в нем кратковременного тока. Направление этого тока позволит судить о знаке. Заряда. Если же в этом направлении будут двигаться отрицательные заряды, то должен наблюдаться ток, имеющий направление справа налево и наоборот. Возникающий ток зависит от зарядов и способности их носителей более или менее долго сохранять по инерции свое движение, несмотря на помехи, т. е. от их массы. Таким образом, этот опыт не только позволяет проверить предположение о существовании в металле свободных зарядов, но и определить сами заряды, их знак и массу их носителей (точнее, отношение заряда к массе elm).

В практическом осуществлении опыта оказалось более удобным использовать не поступательное, а вращательное движение проводника. Схема такого опыта приведена на рис.2.

Рисунок 2

На катушке, в которую вделаны две изолированные друг от друга полуоси 00, укреплена проволочная спираль 1. Концы спирали припаяны к обеим половинам оси и при помощи скользящих контактов 2 («щеток») присоединены к чувствительному гальванометру 3. Катушка приводилась в быстрое вращение и затем внезапно тормозилась. Опыт действительно обнаружил, что при этом в гальванометре возникал электрический ток. Направление этого тока показало, что по инерции движутся отрицательные заряды. Измерив заряд, переносимый этим кратковременным током, можно было найти отношение свободного заряда к массе его носителя. Отношение это оказалось равным e/m=l,8 1011 Кл/кг, что хорошо совпадает со значением такого отношения для электронов, определенным другими способами.

Статистика Ферми - Дирака.

Лекция 5.

Процессы в твердых телах (электропроводность, теплопроводность, и т.д.) связаны с движением коллективов (ансамблей) тождественных частиц, в частности, электронов. Свойства таких ансамблей описываются законами квантовой статистики. Центральным понятием любой статистики (квантовой или классической) является функция распределения р(Е), определяющая вероятность того, что состояние с энергией Е в условиях теплового равновесия занято частицей . На частицы с полуцелым спином (т.е. s = 1/2) (их называют ферми-частицами, фермионами, ферми-газом; к ним принадлежат, конечно, электроны) действует принцип запрета Паули, и ансамбли таких частиц описываются статистикой Ферми-Дирака. Функция распределения в статистике Ферми-Дирака имеет вид

Отметим основные свойства распределения Ферми-Дирака:

1) Вид распределения не зависит от свойства конкретной системы частиц. Применительно к твердым телам можно сказать, что вне зависимости от структуры и состава тела, вида энергетических зон, функция р(Е) неизменна.

2) Различия в свойствах тел проявляются в различиях энергии Е F , которую называют энергией Ферми. Если для данного твердого тела известна энергия Е F , то известно, как расположена функция р(Е) на схеме энергетических уровней.

3) Как видно из формулы (1.21), при Е = Е F вероятность р(Е F) = 0,5 при любой температуре Т > 0. Если в кристалле имеется уровень энергии электрона, совпадающий с уровнем Ферми, то вероятность его заполнения электроном при Т > 0 равна 0,5. Заметим, что уровень Ферми в твердых телах может находиться как в разрешенных, так и в запрещенных зонах энергетического спектра.

4) При температуре Т = 0 вероятность р(Е) = 1, если Е < Е F и р(Е) = 0, если Е > Е F . Следовательно, уровень Ферми - это наибольшая энергия, которой может обладать электрон при Т = 0, если этот уровень расположен в разрешенной зоне. Функции р(Е) для Т = 0 и Т > 0 показаны на рис.1.12.

5) Для энергии Е - Е F >> kT величина (E - E F)/kT >> 1, поэтому формула преобразовывается к виду

В этом приближении распределение Ферми-Дирака переходит в распределение Больцмана.

6) Основной параметр распределения Ферми - Дирака - энергию Е F находят из условия, что полное число электронов, заполняющих уровни энергетических зон, равняется числу электронов в кристалле.

Соответствующий квантовомеханический расчет показывает, что в случае идеальной кристаллической решетки электроны проводимости не испытывали бы при своем движении никакого сопротивления и электропроводность металлов была бы бесконечно большой.



Однако кристаллическая решетка никогда не бывает совершенной. Нарушения строгой периодичности решетки бывают обусловлены наличием примесей или вакансий, а также тепловыми колебаниями решетки. Рассеяние электронов на атомах примеси и на фононах приводит к возникновению электросопротивления металлов. Чем чище металл и ниже температура, тем меньше его сопротивление.

Удельное электрическое сопротивление металлов можно представить в виде

где r колеб - сопротивление, обусловленное тепловыми колебаниями решетки, r прим - сопротивление, обусловленное рассеянием электронов на атомах примеси. Слагаемое r колеб уменьшается с понижением температуры и обращается в нуль при Т = 0 К. Слагаемое r прим при небольшой концентрации примесей не зависит от температуры и образует так называемое остаточное сопротивление металла (кроме металлов переходящих в сверхпроводящее состояние).

Пусть в единице объема металла имеется n свободных электронов. Назовем среднюю скорость этих электронов дрейфовой скоростью V др . По определению

В отсутствие внешнего поля дрейфовая скорость равна нулю, и электрический ток в металле отсутствует. При наложении на металл внешнего электрического поля Е дрейфовая скорость становится отличной от нуля - в металле возникает электрический ток. Согласно закону Ома дрейфовая скорость является конечной и пропорциональной силе F = - e E .

Кроме силы - e E на электроны проводимости в металле действует сила “трения”, среднее значение которой равно

(r - коэффициент пропорциональности).

Уравнение движения для “среднего” электрона имеет вид

где m * - эффективная масса электрона. Эффективная масса m * может сильно отличаться от фактической массы электрона m, в частности она может принимать отрицательные значения. Несмотря на это, именно значение m * определяет характер движения электрона в решетке.

Таким образом, воздействие решетки на движение можно учесть, заменив в уравнении движения истинную массу m эффективной массой m * . Уранение (1.25) позволяет найти установившееся значение V др. Если после установления стационарного состояния выключить внешнее полеЕ , дрейфовая скорость начнет убывать и по достижении состояния равновесия между электронами и решеткой обращается в ноль. Найдем закон убывания дрейфовой скорости после выключения внешнего поля. Положив Е = 0 , получим уравнение

Его решение имеет вид

где - значение дрейфовой скорости в момент выключения поля. Из (1.26) следует, что за время

значение дрейфовой скорости упадет в e раз. t - время релаксации , характеризующее процесс установления равновесия между электронами и решеткой, нарушенное действием внешнего поля Е . Тогда из (1.24) получаем

Установившееся значение дрейфовой скорости можно найти, приравняв нулю сумму силы - eE и силы трения

Установившееся значение плотности тока получаем, умножив это значение V др на заряд электрона - e и на плотность электронов n

Коэффициент пропорциональности между Е и j представляет собой удельную электропроводность s. Таким образом,

В классической теории электропроводности выражение для проводимости имеет вид

где t / - среднее время свободного пробега электронов.

Из сравнения формул (1.29) и (1.30) вытекает, что время релаксации совпадает по порядку величины с временем свободного пробега электронов в металле.

Отметим, что выкладки, приведшие к формуле (1.29), одинаково пригодны как при классической трактовке движения электронов проводимости в металле, так и при квантовомеханической трактовке. Различие этих двух трактовок заключается в следующем. При классическом рассмотрении предполагается, что все электроны возмущаются внешним электрическим полем, в соответствии с чем каждое слагаемое в (1.23) получает добавку в направлении, противоположномЕ . При квантовомеханическом подходе приходиться принимать во внимание, что возмущаются полем и изменяют свою скорость лишь электроны, занимающие состояния вблизи уровня Ферми. Электроны, находящиеся на более глубоких уровнях, полем не возмущаются, и их вклад в сумму (1.23) не изменяется. Кроме того, при классической трактовке используется обычная масса m, при квантовомеханической трактовке вместо обычной массы должна быть взята эффективная масса электрона m * .

В этой статье раскроем тему электропроводности, вспомним о том, что такое электрический ток, как он связан с сопротивлением проводника и соответственно с его электропроводностью. Отметим основные формулы для вычисления данных величин, коснемся темы и ее связи с напряженностью электрического поля. Также затронем связь электрического сопротивления и температуры.

Для начала вспомним о том, что же такое электрический ток. Если поместить вещество во внешнее электрическое поле, то под действием сил со стороны этого поля, в веществе начнется движение элементарных носителей заряда - ионов или электронов. Это и будет электрическим током. Сила тока I измеряется в амперах, и один ампер - это ток, при котором через поперечное сечение проводника протекает за секунду заряд, равный одному кулону.


Ток бывает постоянным, переменным, пульсирующим. Постоянный ток не меняет своей величины и направления в каждый конкретный момент времени, переменный ток с течением времени меняет свои величину и направление (генераторы переменного тока и трансформаторы дают именно переменный ток), пульсирующий ток меняет свою величину, но не меняет направления (например выпрямленный переменный ток является пульсирующим).

Вещества имеют свойство проводить электрический ток под действием электрического поля, и это свойство называется электропроводностью, которая у разных веществ различна. Электропроводность веществ зависит от концентрации в них свободных заряженных частиц, то есть ионов и электронов, не связанных ни с кристаллической структурой, ни с молекулами, ни с атомами данного вещества. Так, в зависимости от концентрации в веществе свободных носителей заряда, вещества по степени электропроводности подразделяются на: проводники, диэлектрики и полупроводники.

Наиболее высокой электропроводностью обладают , и по физической природе, проводники в природе представлены двумя родами: металлами и электролитами. В металлах ток обусловлен перемещением свободных электронов, то есть проводимость у них электронная, а в электролитах (в растворах кислот, солей, щелочей) - перемещением ионов - частей молекул, имеющих положительный и отрицательный заряд, то есть проводимость у электролитов ионная. Ионизированные пары и газы отличаются смешанной проводимостью, в них ток обусловлен движением и электронов и ионов.

Электронная теория отлично объясняет высокую электропроводность металлов. Связь валентных электронов с их ядрами в металлах слаба, потому эти электроны свободно перемещаются от атома к атому по объему проводника.

Получается, что свободные электроны в металлах заполняют пространство между атомами подобно газу, электронному газу, и находятся в хаотичном движении. Но при внесении металлического проводника в электрическое поле, свободные электроны станут двигаться упорядоченно, они переместятся по направлению к положительному полюсу, чем создадут ток. Таким образом, упорядоченное движение свободных электронов в металлическом проводнике называется электрическим током.

Известно, что скорость распространения электрического поля в пространстве примерно равна 300000000 м/с, то есть скорости света. Это та же скорость, с которой ток проходит по проводнику.

Что это значит? Это не значит, что каждый электрон в металле движется с такой огромной скоростью, электроны в проводнике напротив - имеют скорость от нескольких миллиметров в секунду до нескольких сантиметров в секунду, в зависимости от , а вот скорость распространения электрического тока по проводнику как раз равна скорости света.

Все дело в том, что каждый свободный электрон оказывается в общем электронном потоке того самого «электронного газа», и во время прохождения тока, электрическое поле оказывает действие на весь этот поток, в итоге электроны непрерывно друг другу передают это действие поля - от соседа к соседу.

Но движутся электроны на своих местах очень медленно, несмотря на то, что скорость распространения электрической энергии по проводнику оказывается огромной. Так, когда на электростанции включают рубильник, ток мгновенно возникает во всей сети, а электроны при этом практически стоят на местах.


Однако, когда свободные электроны движутся по проводнику, они испытывают многочисленные столкновения на своем пути, они сталкиваются с атомами, ионами, молекулами, передавая им часть своей энергии. Энергия движущихся электронов, преодолевающих такое сопротивление, частично рассеивается в виде тепла, и проводник нагревается.

Эти столкновения служат сопротивлением движению электронов, потому свойство проводника препятствовать движению заряженных частиц и называют электрическим сопротивлением. При малом сопротивлении проводника проводник нагревается током слабо, при значительном - намного сильнее, и даже до бела, этот эффект применяется в нагревательных приборах и в лампах накаливания.


Единица изменения сопротивления - Ом. Сопротивление R = 1 Ом - это сопротивление такого проводника, при прохождении по которому постоянного тока в 1 ампер, разность потенциалов на концах проводника равна 1 вольту. Эталон сопротивления в 1 Ом - столб ртути высотой 1063 мм, сечением 1 кв.мм при температуре 0°С.


Поскольку проводникам характерно электрическое сопротивление, то можно сказать, что в какой-то степени проводник способен проводить электрический ток. В связи с этим введена величина, называемая проводимостью или электропроводностью. Электропроводность - это способность проводника проводить электрический ток, то есть величина, обратная электрическому сопротивлению.

Единица измерения электропроводности G (проводимости) - Сименс (См), и 1 См = 1/(1 Ом). G = 1/R.


Так как атомы различных веществ в разной степени препятствуют прохождению электрического тока, то и электрическое сопротивление у различных веществ разное. По этой причине введено понятие , величина которого «р» характеризует проводящие свойства того или иного вещества.

Удельное электрическое сопротивление измеряется в Ом*м, то есть сопротивление куба вещества с ребром в 1 метр. Таким же образом электропроводность вещества характеризуется удельной электропроводностью?, измеряемой в См/м, то есть проводимость куба вещества с ребром в 1 метр.


Сегодня проводящие материалы в электротехнике используют в основном в виде лент, шин, проволок, с определенной площадью поперечного сечения и определенной длины, но не в виде метровых кубов. И для более удобных расчетов электрического сопротивления и электропроводности проводников конкретных размеров были введены более приемлемые единицы измерения как для удельного электрического сопротивления, так и для удельной электропроводности. Ом*мм2/м - для удельного сопротивления, и См*м/мм2 - для удельной электропроводности.

Теперь можно говорить, что удельное электрическое сопротивление и удельная электропроводность характеризуют проводящие свойства проводника площадью поперечного сечения в 1 кв.мм, длиной в 1 метр при температуре 20°C, это более удобно.

Лучшей электропроводностью обладают такие металлы как: золото, медь, серебро, хром, алюминий. Сталь и железо проводят ток хуже. Чистые металлы всегда обладают лучшей электропроводностью, чем их сплавы, поэтому чистая медь в электротехнике предпочтительней. Если нужно специально высокое сопротивление, то используют вольфрам, нихром, константан.

Зная величину удельного электрического сопротивления или удельной электропроводности, можно легко вычислить сопротивление или электропроводность конкретного проводника, изготовленного из данного материала, приняв в расчет длину l и площадь поперечного сечения S этого проводника.

Электропроводность и электрическое сопротивление всех материалов зависит от температуры , поскольку частота и амплитуда тепловых колебаний атомов кристаллической решетки с ростом температуры так же возрастает, соответственно возрастает и сопротивление электрическому току, потоку электронов.

При понижении температуры - наоборот, колебания атомов кристаллической решетки становятся меньше, сопротивление уменьшается (возрастает электропроводность). У одних веществ зависимость сопротивления от температуры выражена слабее, у других - сильнее. Например такие сплавы как константан, фехраль и манганин слабо меняют удельное сопротивление в определенном интервале температур, поэтому из них делают термостабильные резисторы.

Позволяет вычислить для конкретного материала приращение его сопротивления при определенной температуре, и численно характеризует относительное приращение сопротивления при увеличении температуры на 1 °С.

Зная температурный коэффициент сопротивления и приращение температуры, можно легко вычислить удельное сопротивление вещества при заданной температуре.

Надеемся, что наша статья была для вас полезной, и теперь вы легко сможете вычислить сопротивление и проводимость любого провода при любой температуре.

Электрическая проводимость характеризует способность тела проводить электрический ток. Проводимость — величина обтаная сопротивлению . В формуле она обратно пропорциональна электрическому сопротивлению, и используются они фактически для обозначения одних и тех же свойств материала. Измеряется проводимость в Сименсах : [См]=.

Виды электропроводимости:

Электронная проводимость , где переносчиками зарядов являются электроны. Такая проводимость характерна в первую очередь для металлов, но присутствует в той или иной степени практически в любых материалах. С увеличением температуры электронная проводимость снижается.

Ионная проводимость . Существует в газообразных и жидких средах, где имеются свободные ионы, которые также переносят заряды, перемещаясь по объёму среды под действием электромагнитного поля или другого внешнего воздействия. Используется в электролитах. С ростом температуры ионная проводимость увеличивается, поскольку образуется большее количество ионов с высокой энергией, а также снижается вязкость среды.

Дырочная проводимость . Эта проводимость обуславливается недостатком электронов в кристаллической решётке материала. Фактически, переносят заряд здесь опять же электроны, но они как бы движутся по решётке, занимая последовательно свободные места в ней, в отличии от физического перемещения электронов в металлах. Такой принцип используется в полупроводниках, наряду с электронной проводимостью.


Самыми первыми материалами, которые стали использоваться в электротехнике исторически были металлы и диэлектрики (изоляторы, которым присуща маленькая электрическая проводимость). Сейчас получили широкое применение в электронике полупроводники. Они занимают промежуточное положение между проводниками и диэлектриками и характеризуются тем, что величину электрической проводимости в полупроводниках можно регулировать различным воздействием. Для производства большинства современных проводников используются кремний, германий и углерод. Кроме того, для изготовления ПП могут использоваться другие вещества, но они применяются гораздо реже.

В важное значение имеет передача тока с минимальными потерями. В этом отношении важную роль играют металлы с большой электропроводностью и, соответственно, маленьким электросопротивлением. Самым лучшим в этом отношении является серебро (62500000 См/м), далее следуют медь (58100000 См/м), золото (45500000 См/м), алюминий (37000000 См/м). В соответствии с экономической целесообразностью чаще всего используются алюминий и медь, при этом медь по проводимости совсем немного уступает серебру. Все остальные металлы не имеют промышленного значения для производства проводников.

Классическая теория электропроводности металлов зародилась в начале ХХ века. ЕЕ основоположником стал немецкий физик Карл Рикке. Он опытным путем установил, что прохождение заряда через металл не сопряжено с переносом атомов проводника, в отличие от жидких электролитов. Однако это открытие не объяснило, что именно является носителем электрических импульсов в структуре металла.

Ответить на это вопрос позволили опыты ученых Стюарта и Толмена, проведенные в 1916 году. Им удалось установить, что за перенос электричества в металлах отвечают мельчайшие заряженные частицы - электроны. Это открытие легло в основу классической электронной теории электропроводности металлов. С этого момента началась новая эпоха исследований металлических проводников. Благодаря полученным результатам мы сегодня имеем возможность пользоваться бытовыми приборами, производственным оборудованием, станками и многими другими устройствами.

Как отличается электропроводность разных металлов?

Электронная теория электропроводности металлов получила развитие в исследованиях Паулю Друде. Он сумел открыть такое свойство как сопротивление, которое наблюдается при прохождении электрического тока через проводник. В дальнейшем это позволит классифицировать разные вещества по уровню проводимости. Из полученных результатов легко понять, какой металл подойдет для изготовления того или иного кабеля. Это очень важный момент, так как неправильно подобранный материал может стать причиной возгорания в результате перегрева от прохождения тока избыточного напряжения.

Наибольшей электропроводностью обладает металл серебро. При температуре +20 градусов по Цельсию она составляет 63,3*104 сантиметров-1. Но изготавливать проводку из серебра очень дорого, так как это довольно редкий металл, который используется в основном для производства ювелирных и декоративных украшений или инвестиционных монет.

Металл, обладающий самой высокой электропроводностью среди всех элементов неблагородной группы - медь. Ее показатель составляет 57*104 сантиметров-1 при температуре +20 градусов по Цельсию. Медь является одним из наиболее распространенных проводников, которые используются в бытовых и производственных целях. Она хорошо выдерживает постоянные электрические нагрузки, отличается долговечностью и надежностью. Высокая температура плавления позволяет без проблем работать долгое время в нагретом состоянии.

По распространенности с медью может конкурировать только алюминий, который занимает четвертое место по электропроводности после золота. Он используется в сетях с невысоким напряжением, так как имеет почти вдвое меньшую температуру плавления, чем медь, и не способен выдерживать предельные нагрузки. С дальнейшим распределением мест можно ознакомиться, взглянув на таблицу электропроводности металлов.

Стоит отметить, что любой сплав обладает гораздо меньшей проводимостью, чем чистое вещество. Это связано со слиянием структурной сетки и как следствие нарушением нормального функционирования электронов. Например, при производстве медного провода используется материал с содержанием примесей не более 0,1%, а для некоторых видов кабеля этот показатель еще строже - не более 0,05%. Все приведенные показатели являются удельной электропроводностью металлов, которая рассчитывается как отношение между плотностью тока и величиной электрического поля в проводнике.

Классическая теория электропроводности металлов

Основные положения теории электропроводности металлов содержат шесть пунктов. Первый: высокий уровень электропроводности связан с наличием большого числа свободных электронов. Второй: электрический ток возникает путем внешнего воздействия на металл, при котором электроны из беспорядочного движения переходят в упорядоченное.

Третий: сила тока, проходящего через металлический проводник, рассчитывается по закону Ома. Четвертый: различное число элементарных частиц в кристаллической решетке приводит к неодинаковому сопротивлению металлов. Пятый: электрический ток в цепи возникает мгновенно после начала воздействия на электроны. Шестой: с увеличением внутренней температуры металла растет и уровень его сопротивления.

Природа электропроводности металлов объясняется вторым пунктом положений. В спокойном состоянии все свободные электроны хаотическим образом вращаются вокруг ядра. В этот момент металл не способен самостоятельно воспроизводить электрические заряды. Но стоит лишь подключить внешний источник воздействия, как электроны мгновенно выстраиваются в структурированной последовательности и становятся носителями электрического тока. С повышением температуры электропроводность металлов снижается.

Это связано с тем, что слабеют молекулярные связи в кристаллической решетке, элементарные частицы начинают вращаться в еще более хаотичном порядке, поэтому построение электронов в цепь усложняется. Поэтому необходимо принимать меры по недопущению перегрева проводников, так как это негативно сказывается на их эксплуатационных свойствах. Механизм электропроводности металлов невозможно изменить ввиду действующих законов физики. Но можно нивелировать негативные внешние и внутренние воздействия, которые мешают нормальному протеканию процесса.

Металлы с высокой электопроводностью

Электропроводность щелочных металлов находится на высоком уровне, так как их электроны слабо привязаны к ядру и легко выстраиваются в нужной последовательности. Но эта группа отличается невысокими температурами плавления и огромной химической активностью, что в большинстве случаев не позволяет использовать их для изготовления проводов.

Металлы с высокой электропроводностью в открытом виде очень опасны для человека. Прикосновение к оголенному проводу приведет к получению электрического ожога и воздействию мощного разряда на все внутренние органы. Зачастую это влечет мгновенную смерть. Поэтому для безопасности людей используются специальные изоляционные материалы.

В зависимости от сферы применения они могут быть твердыми, жидкими и газообразными. Но все типы предназначены для одной функции - изоляции электрического тока внутри цепи, чтобы он не мог оказывать воздействие на внешний мир. Электропроводность металлов используется практически во всех сферах современной жизни человека, поэтому обеспечение безопасности является первоочередной задачей.



Похожие статьи