Схема для автоматического включения дренажного насоса. Электросхема насосных станций

Без воды обойтись невозможно, а если у вас есть свое хозяйство или вы проживаете в частном доме то вам не обойтись без простой схемы управления насосом. Управление насосом должна работать хотя бы в двух режимах: дренаж – выкачивание воды из емкости, скважины или колодца и водоподъем - в режиме наполнения емкости. В случае наполнения водного резервуара возможен перелив, а в случае выкачивания воды из него насос может попасть под сухой ход и сгореть. Для избегания этих проблем и предназначена любая схема управления насосом.

В разработке применены два датчика: короткий стальной прут контролирует максимально разрешенный уровень воды и длинный металлический прут датчик минимального уровня. Сама резервуар металлический и подключен к минусовой шине. Если емкость сделана из диэлектрического материала тогда допускается применять дополнительный стальной прут во всю длину емкости. В случае контакта с водой длинным датчиком и с коротким датчиком, логический уровень на выводах микросхемы К561ЛЕ5 меняется с высокого на низкий, изменяя режим работы насоса.


Управление насосом схема на К561ЛЕ5

В случае если уровень воды ниже обоих датчиков, на десятом выводе микросхемы логический ноль. При плавном повышении уровня воды даже в случае, если вода будет контактировать с длинным датчиком, все равно будет логический ноль. Как только уровень воды дойдет до короткого датчика, появится логическая единица и транзистор включит реле управления насосом, который начнет откачивает воду из емкости.

Когда, уровень воды упадет, и короткий датчик не будет соприкасаться с водой, то на выводе 10 все равно будет логическая единица и насос продолжает работать. Но если уровень воды опустится ниже длинного датчика, то появится логический ноль и насос прекратит свою работу. Тумблер S1 используется для обратного действия.

В этой схеме Датчик уровня воды в резервуаре собран так, что контакты SF1 замыкаются, если уровень воды окажется ниже минимального, a геркона SF2 - замыкаются только тогда, когда вода достигнет максимального уровня.

Эту радиолюбительскую разработку я использовал на даче, для контроля и поддержания определенное количества уровня жидкости в поливальном баке.

Любой автомат подачи воды начинается с датчика. Чаще всего используют контактные датчики, погружаемые в воду и измеряющие сопротивление воды. Мне кажется что такой способ имеет серьезные недостатки. Вода постоянно находится под током. Да, этот ток мизерный, но каким бы он не был, он приводит к электрохимическим процессам в воде. Это не только усиливает коррозию металлического резервуара, контактов датчика, но и увеличивает в воде содержание солей металлов, что может быть неполезно для организма, конечно, кроме случая использования серебряных контактов и емкости из пищевой пластмассы. В таком случае добавление в воду ионов серебра может оказать и некоторую пользу организму. Но все же предпочтительно отказаться от Датчик уровня воды, используемый в этой разработке, представляет собой пластмассовую трубу, опущенную вертикально в бак с водой. Внутри трубы свободно перемещается поплавок, вырезанный из пенопласта, на котором закреплен магнит, взятый от старого динамика. Магнит расположен на поверхности поплавка и с водой не контактирует. Чтобы поплавок не выпадал из трубы при низком уровне воды нижнюю часть трубы перекрывают перемычкой, сделанной из корпуса старой шариковой авторучки (в стенках трубы напротив друг друга сверлят отверстия и с некоторым трением вставляют туда авторучку).


Управление насосом схема автомат

Снаружи на трубе закрепляют два геркона, место их установки подбирают экспериментально исходя из особенностей конкретного бака. Один геркон должен замыкаться под действием постоянного магнита поплавка при опустошении бака до минимального уровня, при котором нужно включать электронасос для пополнения бака. Второй геркон устанавливается в таком месте трубы, где он замыкается под действием магнита поплавка при максимальном заполнении бака, когда нансос нужно выключить. Для повышения надежности можно в месте установке каждого геркона установить несколько герконов, расположив их по кругу трубы и подключив параллельно друг другу. Дело в том, что в процессе движения датчик может поворачиваться, а геркон более чувствителен к перпендикулярному воздействию на него магнитного поля, поэтому при некотором положении магнита он может и не срабатывать.

Еще нужно учесть что расстояние между герконом (герконами) нижнего и верхнего уровня на трубе должно быть значительным чтобы ни в каком положении поплавка магнитное поле не могло приводить к замыканию обоих герконов (обоих групп герконов), так как одновременное замыкание герконов нижнего и верхнего уровня приводит к замыканию в цепи питания схемы. Герконы и идущие к ним провода необходимо тщательно изолировать от воды используя герметик.

Схема электронной части показана на рисунке выше. На элементах D1.1 и D1.2 построен триггер Шмитта с относительно небольшим входным сопротивлением (зависит от величины R1). Небольшое входное сопротивление приводит к минимальному уровню наводок на провод, идущий от геркона и снижает склонность схемы к повреждению статическим электричеством. Как известно, триггер Шмитта принимает состояние соответствующее состоянию на его входе. Входом являются соединенные вместе выводы элемента D1.1. Если на этот вход подать логическую единицу, то на выходе элемента D1.2 так же будет логическая единица, но если после этого вход триггера отключить, то он так и останется в единичном состояния за счет того, что на его вход будет поступать логическая единица с его же выхода через резистор R1. Аналогично и с установкой в нулевое состояние.

Геркон SG1 установлен в нижней части трубы и отвечает за включение насоса для наполнения бака. Геркон SG2 располагается в верхней части трубы и отвечает за выключение насоса. Один или другой герконы замыкаются только в верхнем и нижнем положении уровня воды. В среднем положении магнит не действует на них и они не замкнуты. Предположим схему включили, а уровень воды был средним. Триггер Шмитта при включении питания может установиться произвольно в любое положение. Если он установился в положение единицы, то включается насос и накачивает воду в бак до тех пор, пока не замкнется геркон SG2. Если триггер Шмитта установился в нулевое положение, то насос не включается до тех пор пока уровень воды не опустится до момента замыкания SG1. Предположим, уровень воды в баке минимальный. Тогда замыкается геркон SG1 и через него на вход триггера Шмитта поступает напряжение высокого уровня. На выходе D1.2 устанавливается логическая единица.

Соответственно, единица будет и на выходе D1.4. Транзистор VT3 открывается и подает питание на реле К1, если переключатель S1 находится в положении «АВТ», то это приведет к включению электронасоса. В таком состоянии схема будет находится до тех пор, пока поплавок не поднимется по трубе на столько, что его магнит замкнет геркон SG2. Теперь вход триггера Шмитта соединен с общим минусом, то есть, на нем низкий уровень. Соответственно низкий уровень будет и на выходе D1.2 и D1.4. Транзистор VT3 закрывается и если S1 в положении «АВТ» его контакты выключают электронасос. Светодиоды HL1 и HL2 служат для индикации состояния системы. Если насос включен горит HL1, а если выключен - HL2. По состоянию светодиодов можно следить за степенью заполнения резервуара и работой электронасоса. Переключатель S1 служит для перехода на ручное или автоматические управление. S1 -это тумблер с нейтральным положением. В нейтральном положении («ВЫК») электронасос выключен независимо от состояния датчиков.

В положении «ВК» насос включен независимо от состояния датчиков. А в положении «АВТ» происходит автоматическое управление насосом. Положения «ВК» и «ВЫК» нужны при проведении техобслуживания или ремонта водопровода, а так же, для ручного управления при неисправности датчиков. Микросхема К561ЛЕ5 или К561ЛА7 - логика работы входов инверторов не имеет значения, входы соединены вместе. Можно использовать любую микросхему серии К561, К176 или CD с числом инверторов не менее четырех. Например, К176ЛЕ5, К176ЛА7, К561ЛН2. Электромагнитное реле К1 с обмоткой на 12V и контактами на 230V при токе до ЗА. Можно использовать любое аналогичное реле или выбрать в зависимости от мощности насоса. Если мощность насоса не более 200W можно использовать реле КУЦ-1 от старого телевизора.

Данное автоматическое устройство управления водяным насосом может оказать неоценимую помощь в контроле и поддержание заданного уровня воды в емкости находящейся, например, на даче или фермерском хозяйстве.

Так, при использовании в колодце погружного насоса для полива огорода нужно присматривать, чтобы уровень воды не ушел ниже глубины насоса. Иначе насос может перегреется и выйти из строя, работая в пустую (на холостом ходу). Избежать всевозможные неприятности в работе погружного насоса поможет нижеприведенная схема автоматического управления насосом.

Описание работы контроллера насоса

Схема достаточно проста и надежна. В ней реализована функция возможность выбора режима работы: ОТКАЧКА/ЗАКАЧКА.

Элементы схемы не имеют связи с самой емкостью, что позволяет избежать электро-химическую коррозию (в случае применения металлической емкости). Суть функционирования схемы заключается в способности воды проводить электрический ток. Вода, замыкая стержни датчика, замыкает электроцепь базы транзистора VT1. При этом активируется электромагнитное реле К1, которое своей контактной парой К1.1 включает/выключает (зависит от положения S2.1) электронасос.

В роли датчиков F1, F2 возможно применить металлические пластины из нержавеющей стали. Как вариант можно использовать не нужную нержавеющую бритву. Пластины необходимо закрепить на диэлектрик (оргстекло, текстолит) на расстоянии от 5 до 20 мм друг от друга.

При подачи питания и в случае если в емкости нет воды, электромагнитное реле К1 не активно, и его контактная пара К1.1 (нормально замкнутые) осуществляют подачу питания на насос до того момента, когда вода наполнит емкость (до датчика F1). При этом включится реле и контактной парой выключит насос.

Заново насос начнет качать воду, только в том случае, когда уровень воды станет ниже контакта датчика F2. Так работает автомат в режиме ЗАКАЧКА, определяемое положением переключателя S2. При переводе этого же переключателя в положение ОТКАЧКА, устройство можно применить для откачки воды, то есть насос будет отключаться, если уровень воды станет ниже датчика F2.

Насосные установки , используемые для нормализации подачи водоснабжения имеют определенный гарантийный срок, но, чтобы его продлить целесообразно использовать автоматическое управление водяным насосом. Такое оборудование представляет собой установку, предотвращающую поломку закачивающего прибора при недостаточном уровне воды в источнике.

Если насосная подстанция работает без соответствующего датчика, повышается риск выхода ее из строя, так как не предназначены для работы «в сухую». В условиях дефицита жидкости оборудование начинает портиться и перегорать. Если установить датчик уровня воды, можно предотвратить подобные неприятности. Эта статья посвящена решению вопроса выбора защитного устройства, его принципа работы и особенностей.

Подбор реле для защиты насосной станции от холостого хода и поддержания оптимального уровня воды в домашних условиях требует не меньшего внимания, чем . В первую очередь вы должны учесть характеристики собственной скважины, а также воспользоваться косвенными советами:

  • монтаж должен быть удобным и доступным. Поэтому не следует приобретать слишком массивные установки. Также они должны соответствовать характеристикам самого насоса;
  • идеально, если ваш датчик обладает упрощенной автоматической регулировкой. Другими словами, устройство имеет способность самостоятельно отключаться от сети, пока вода в скважине не придет к прежнему уровню;
  • следите за тем, чтобы защитное реле было хорошо гидроизолировано, так как попадание влаги на корпус выведет механизм из строя, если произойдет увеличение уровня жидкости;
  • уточните у продавца, насколько деталь для насоса долговечна и надежна. Не помешает узнать, как влияет частая пропажа уровня воды в скважине на работу защиты;
  • цена должна соответствовать оптимальным параметрам независимо от фирмы производителя. Варьироваться стоимость может из-за различного диапазона давления и общих технических характеристик.

Важно! Если вами был правильно сделан выбор и проведен монтаж, реле сможет самостоятельно остановить прибор без вреда для рабочего механизма насосного оборудования.

Рабочий механизм датчика. Как ведет себя конструкция во включенном виде?

Обычное реле холостого хода для насоса настроено на работу давления в диапазоне от 1 до 8 бар, при этом оно ориентируется по уровню жидкости. Внутренний механизм датчика представляет собой блок с настроенными пружинами, которые отвечают за двухсторонние пределы давления. Регулируются они специальными установленными гайками. Показатель давления контролирует мембранная пластина, при помощи которой пружина ослабляется при минимальном давлении и напрягается при достижении максимального значения.

Пружина датчика давления срабатывает при размыкании и смыкании контактов цепи. Если давление падает, происходит смыкание контактов, которое осуществляет датчик защиты и насос приходит в рабочее положение. В противоположном случае, насос отключается и не действует до тех пор, пока давление не нормализуется до оптимальных отметок.

Чтобы настроить правильную работу датчика понадобиться схема управления насосом. С целью точной настройки необходимо привести насосный агрегат в рабочее состояние - это позволит поднять давление воды в скважине. Регулировать работоспособность установки можно при помощи специально выведенных винтов под крышкой, которая защищает автоматику датчика.

Вы можете самостоятельно настроить пределы срабатывания защитного устройства. Для этого выполняем следующие действия последовательно.

  1. Фиксируем максимальный и минимальный предел давления по уровню жидкости в емкости, при которых насос находится в рабочем состоянии. Обязательно снимите показания с манометра.
  2. Отключаем насосную установку от электричества и разбираем защитный прибор.
  3. Снимаем крышку корпуса и немного отпускаем гайку, удерживающую маленькую пружину.
  4. Затем настраиваем минимальное давление: подтягиваем или отпускаем большую пружину также при помощи фиксирующей гайки.
  5. Открываем кран с целью снизить давление в системе трубопровода. При этом не забывайте контролировать срабатывание насоса.
  6. Обращаем внимание на показания манометра, если они оптимальны для вашего случая оставляем реле в таком состоянии, если нет - регулируем дальше.

Внимание! При настройке контролирующего датчика холостого хода вы должны учитывать возможности насосного агрегата. Например, если его заводское значение с потерями составляет порядка 3,5 бар, настраивать реле нужно на 3 бара. В противном случае есть вероятность перегрузки оборудования.

Несколько слов об автоматическом управлении насосом на воду

Устройства, основанные на схеме «автомат», могут пригодиться в домашних и фермерских условиях. Особенно важно наличие подобного оборудования в системах, где обязателен контроль уровня воды и ее давления.

Датчики, основанные на автоматической схеме управления, считаются полезными и не требующими постоянного наблюдения за оборудованием скважины, колодца или другого источника водоснабжения. Также подобные конструкции часто используются многофункционально.

Обратите внимание на схему автоматического управления насосом, она никак не связана с общим резервуаром, откуда поступает вода через насос.

Цель данной разработки — сконструировать простую, но эффективную схему управления водяным насосом, для наполнения или опустошения резервуара с водой. Схема управления насосом построена на интегральной микросхеме К561ЛЕ5, состоящая из четырех логических элементов .

В устройстве используются два датчика: короткий стальной прут — является датчиком максимального уровня воды и длинный — датчик минимального уровня. Сама емкость металлическая и подключена к минусу схемы. Если емкость не металлическая тогда можно применить дополнительный стальной прут длинной равной глубине емкости.

Схема разработана так, что при соприкосновении воды с длинным датчиком, а также с коротким датчиком, логический уровень соответственно на выводах 9 и 1,2 микросхемы DD1 меняется с высокого на низкий, вызывая изменения в работе насоса.

Когда уровень воды ниже обоих датчиков, на выводе 10 микросхемы DD1 логический ноль. При постепенном повышении уровня воды даже когда вода соприкасается с длинным датчиком на выводе 10 также будет логический ноль. Как только уровень воды поднимется до короткого датчика, на выводе 10 появится логическая единица, в результате чего транзистор VT1 включает реле управления насосом, который в свою очередь откачивает воду из резервуара.

Теперь, уровень воды уменьшается, и короткий датчик больше не будет в контакте с водой, но на выводе 10 все равно будет логическая единица, таким образом, насос продолжает работать. Но когда уровень воды опустится ниже длинного датчика, на выводе 10 появится логический ноль и насос остановится.

Переключатель S1 обеспечивает обратное действие. Когда резистор R3 соединен с выводом 11 микросхемы DD1. насос будет работать, когда емкость пустая, и остановится, когда емкость наполнится, то есть в этом случае насос будет использован для наполнения, а не для опустошения емкости.

Портативный USB осциллограф, 2 канала, 40 МГц....

Шагомер, расчет калорий, мониторинг сна, контроль сердечного ритма...



Похожие статьи