Тяжелые металлы источники загрязнения. Источники загрязнения тяжелыми металлами

20.1. Загрязнение вод металлами

Металлы принадлежат к числу главных неорганических загрязнителей пресных и морских вод. Это, в основном, соединения мышьяка, свинца, кадмия, ртути.

Острота проблемы загрязнения водной среды токсичными металлами определяется:

Высокой концентрацией соединений тяжелых металлов в прибрежных районах океана и внутренних морях;

Образованием высокотоксичных металлоорганических комплексов, которые как включаются в абиотический компонент экосистемы, так и поглощаются гидробионтами;

Накоплением металлов гидробионтами в дозах, опасных для человека.

Среди загрязняющих веществ по токсикологическим оценкам «стресс-индексов» тяжелые металлы занимают второе место, уступая только пестицидам.

Источники поступления

Основные источники поступления токсичных металлов в водную среду – прямое загрязнение и сток с суши. Только воды рек ежегодно привносят в океан свыше 320 Мт железа. Кроме того, важная роль в загрязнении гидросферы металлами принадлежит атмосферному переносу. Главные пути поступления металлов в Мировой океан приведены в таблице 29.

Таблица 29

Естественное и антропогенное загрязнение Мирового океана, т год -1

Загрязняющее вещество

Общий сток

Сток с суши

Атмосферный перенос

Естественный

Антропогенный

(1,0-20,0)·10 5

(2,0-20,0)·10 5

(1,0-20,0)·10 3

На поверхность Мирового океана ежегодно выпадает по другим оценкам 200 кт свинца и 5 кт ртути. Вклад атмосферных выпадений свинца в его общий поток в Мировой океан в настоящее время уже превышает геохимический вклад этого элемента с речными стоками. Для кадмия поступления в океан за счет атмосферных выпадений и прямого стока с суши близки, а для ртути атмосферный поток составляет около 25% общего поступления в океанскую среду. Сейчас уже признано, что главным источником поступления тяжелых металлов в окружающую среду является не металлургическое производство, а сжигание угля. Ежегодное сжигание 2,4 млрд. т каменного и 0,9 млрд. т бурого угля рассеивает в окружающей среде 200 кт мышьяка и 224 кт урана, а мировое производство этих металлов составляет только 40 и 30 кт соответственно.

Как уже сказано выше, важную роль в загрязнении гидросферы металлами играют сточные воды. В таблице 30 приведено содержание металлов в бытовых и некоторых видах промышленных сточных вод.

Таблица 30

Промышленность

Мясоперерабатывающая

Жироперерабатывающая

Рыбообрабатывающая

Безалкогольная

Производство мороженого

Текстильная

Парфюмерная

Прачечные

Автомойки

На пути от мест попадания в воду до океана значительная часть металлов оседает на дне рек. Пример приведен в таблице 31.

Таблица 31

Концентрации тяжелых металлов в воде и осадках реки Рур в Эссене (Imhoff, 1991)

В воде (мкг л –1)

В осадках

(мг кг –1 сухого веса)

Кроме того, значительная часть металлов на пути к океану задерживается в водоемах – как в их донных осадках (таблица 32), так и в биоте (таблица 33).

Таблица 32

Поступление металлов в озеро Мичиган (т год -1) (Jackson, 1991)

Из воздуха

С притоками

Смыв с берега

Осаждение

Таблица 33

Компонент

Вода (мкг л –1)

Донные осадки (мг кг –1 сухого веса)

Зоопланктон

(мг кг –1 сухого веса)

Esox lucius L.

Жабры (мг кг –1 сухого веса)

Мышцы (мг кг –1 сухого веса)

Печень (мг кг –1 сухого веса)

Естественно, что наибольшее загрязнение металлами приходится на моря и те части океана, где антропогенная активность высока. Более других загрязнены воды Персидского и Аденского заливов Индийского океана, экваториальная часть Тихого океана, воды течения Гольфстрим в Атлантике, Северное и Средиземное моря.

Токсичность тяжелых металлов

Токсичность тяжелых металлов для планктона определяется тем, что планктонные организмы (особенно фильтраторы) концентрируют металлы, которые ввиду своей неразложимости сохраняются в живых тканях неограниченное время, способствуют гибели планктонтов, а с отмершим планктоном оседают в донных отложениях. Кроме того, что они аккумулируются организмами, они концентрируются в пищевых цепях, что во многом, но не во всем определяет разную токсичность металлов для разных групп гидробионтов (таблица 34).

Таблица 34

Степень токсичности ряда солей тяжелых металлов для некоторых водных животных

Вещество

Планктон

Ракообразные

Моллюски

Мышьяк

Мышьяк широко распространен в содержащих фосфаты породах и соответственно встречается в виде примесей в фосфатных удобрениях или детергентах, производимых их этого сырья. Обычные формы мышьяка в природе: H 3 AsO 3 , As(OH) 3 , H 3 AsO 4 .

Некоторое количество мышьяка используется в качестве пестицида в виде арсенатов натрия и меди для опрыскивания плодовых деревьев. Но основными антропогенными источниками мышьяка являются сжигание угля и выплавка металлов. Если средние концентрации мышьяка в воздухе больших городов составляют 0,01–0,56 мкг м –3 , то вблизи плавильных предприятий (на расстоянии нескольких км) 1,5–7,9 мкг м –3 , а содержание мышьяка в летучей золе угольных электростанций составляет 43–312 мг кг –1 (Мышьяк, 1985).

Свинец

Ежегодно добывается примерно 3,5 Мт свинца, а с учетом повторного извлечения из отходов производство свинца составляет 4,1 Мт год-1.

Загрязнение природных вод и воздуха свинцом происходит в результате процесса обжига и плавки свинцовых руд с целью получения металлического свинца, за счет выбросов отходов с производств, использующих свинец, а также при сжигании угля, древесины и других органических материалов, включая городские отходы. Кроме того, значительные количества свинца попадают в окружающую среду благодаря использованию свинцовых труб для водопроводов и свинцово-кислотных аккумуляторов.

До сих пор серьезными источниками загрязнения окружающей среды остаются алкильные соединения свинца. Только за последние 40 лет примерно 10 Мт свинца переработано в тетраэтилсвинец, который используется в качестве антидетонаторной присадки в автомобильном бензине. Из антропогенных источников свинца этот считается важнейшим. Количество свинца, ежегодно попадающего в океан в результате применения алкилсвинца в качестве антидетонатора дизельного топлива, оценивается в 25 кт.

Pb(CH 2 CH 3) 4 добавляется в бензин, что позволяет двигателям работать при больших давлениях. В бензин добавляют также CH 2 Cl–CH 2 Cl и CH 2 Br–CH 2 Br. В результате сгорания топлива свинец попадает в атмосферу в виде аэрозольных частиц PbBrCl размером менее 2 мкм, попадающих в легкие и оседающих там.

Ртуть

Ртуть относится к числу наиболее токсичных металлов, чаще других встречаемых в окружающей среде. Ртуть – один из самых редких элементов с очень низким содержанием в земной коре. Она встречается в природе в виде красного сульфида, циннабара, черного сульфида и в виде жидкой ртути.

В окружающую среду ртуть поступает как из природных источников, так и из источников техногенного происхождения. Природная ртуть попадает в биосферу из относительно глубоких слоев земной коры благодаря вулканической, гео- и гидротермальной активности.

Главные антропогенные источники ртути:

§ сжигание ископаемого топлива;

§ выбросы промышленных предприятий, из которых наиболее важны сбросы сточных вод с электролизных фабрик по производству хлорощелочей и едкого натра и предприятий, где сульфат ртути используется в качестве катализатора;

§ использование в сельском хозяйстве различных биоцидов, содержащих ртутные соединения.

Было подсчитано, что в результате деятельности человека в окружающую среду ежегодно поступает до 10 кт ртути, из которых 3 кт – за счет сжигания ископаемого топлива. В морскую среду попадает около 5 кт ртути, общее ее количество в водах Мирового океана равно 10 Мт при средней концентрации 0,01-0,03 мкг л -1 .

Существуют бактерии, которые переводят минеральную ртуть в монометил (или метил) ртути (CH3Hg+) (см. рисунок 42).

Ртуть токсична для фитопланктона, поэтому загрязнение ртутью существенно снижает первичную продукцию морских экосистем. Фито- и зоопланктон аккумулирует ртуть в широком диапазоне концентраций 30-3 800 мкг кг-1 сухой массы, показатель аккумуляции ртути может превышать 40 000.

Рис 41. Поведение ртути в водной среде (до аккумуляции организмами).

Ее ПДС для водоемов принято не более 0,005 мг л -1 . В континентальных и океанических водах концентрация ртути составляет примерно 1 мкг кг -1 . Фактическое содержание ртути в водах рек промышленно развитых стран превышает ПДС в 2-4 раза, а содержание ее в тканях рыб нередко в 100-200 раз превышает таковое в природных водах. В тканях, например тунца, концентрация может достигать 120 мкг кг -1 .

Отходы, содержащие ртуть, обычно скапливаются в донных отложениях заливов или эстуариях рек. Дальнейшая ее миграция сопровождается накоплением метиловой ртути и ее включением в трофические цепи водных организмов (особенно крабов и рыб). Например, в канадских озерах Сент-Клэр концентрация ртути в рыбах составляла 2–4 мг кг -1 , в мышцах большой голубой цапли 23 мг кг -1 , в печени – 175 мг кг -1 (Рамад, 1981).

Кадмий

В природе кадмий, как правило, ассоциирован с цинком и их разделение экономически нерентабельно.

Ежегодно во всем мире добывается до 18 кт кадмия (Израэль, 1989). Кадмий широко используется в электронной промышленности, производстве пластмасс, красителей, растворителей. Наиболее известно его использование в никеле-кадмиевых аккумуляторах.

В окружающей среде кадмий присутствует в виде двухвалентного иона, осаждаемого в виде карбоната:

В кислой среде ионы кадмия освобождаются:

К основным антропогенным источникам поступления кадмия в окружающую среду относятся горнорудные и металлургические предприятия, а также сточные воды. Курение поставляет в окружающую среду 6–11 т кадмия ежегодно (Гадаскина, 1988).

Всего воды Мирового океана содержат примерно 140 Мт кадмия при средней концентрации 0,1 мкг л –1 . Кадмий накапливается водными животными, но не концентрируется в пищевых цепях (Израэль, 1989). Концентрация кадмия в разных гидробионтах изменяется от 50 до 550000 мкг кг -1 сухой массы. У некоторых видов устриц, например, коэффициент накопления кадмия равняется 318 000 (Эрхард, 1984).

Кадмий – один из самых опасных токсикантов. Токсичность кадмия связана со схожестью его химических свойств с цинком. При этом он связывается с серой более прочно, чем цинк и, следовательно, вытесняет цинк из многих ферментов, в которых тот используется как ко-фактор. Естественно, эти ферменты прекращают функционировать.

Предыдущая

Одним из сильнейших по действию и наиболее распространенным химическим загрязнением является загрязнение тяжелыми металлами.

Тяжёлые металлы - это элементы периодической системы химических элементов, с молекулярной массой свыше 50 атомных единиц. Эта группа элементов активно участвует в биологических процессах, входя в состав многих ферментов. Группа «тяжелых металлов» во многом совпадает с группой микроэлементов. С другой стороны, тяжёлые металлы и их соединения оказывают вредное воздействие на организм. К ним относятся: свинец, цинк, кадмий, ртуть, молибден, хром, марганец, никель, олово, кобальт, титан, медь, ванадий.

Тяжелые металлы, попадая в организм, остаются там навсегда, вывести их можно только с помощью белков молока.Достигая определенной концентрации в организме, они начинают свое губительное воздействие - вызывают отравления, мутации. Кроме того, что сами они отравляют организм человека, они еще и чисто механически засоряют его - ионы тяжелых металлов оседают на стенках тончайших систем организма и засоряют почечные каналы, каналы печени, таким образом, снижая фильтрационную способность этих органов. Соответственно, это приводит к накоплению токсинов и продуктов жизнедеятельности клеток нашего организма, т.е. самоотравление организма, т.к. именно печень отвечает за переработку ядовитых веществ, попадающих в наш организм, и продуктов жизнедеятельности организма, а почки - за их выведение из организма.

Источники поступления тяжелых металлов делятся на природные (выветривание горных пород и минералов, эрозийные процессы, вулканическая деятельность) и техногенные (добыча и переработка полезных ископаемых, сжигание топлива, движение транспорта, деятельность сельского хозяйства).

Часть техногенных выбросов, поступающих в природную среду в виде тонких аэрозолей, переносится на значительные расстояния и вызывает глобальное загрязнение.

Другая часть поступает в бессточные водоемы, где тяжелые металлы накапливаются и становятся источником вторичного загрязнения, т.е. образования опасных загрязнений в ходе физико-химических процессов, идущих непосредственно в среде (например, образование из нетоксичных).

В водоёмы тяжелые металлы поступают обычно со стоками горнодобывающих и металлургических предприятий, а также предприятий химической и легкой промышленности, где их соединения используют в различных технологических процессах. Например, много солей хрома сбрасывают предприятия по дублению кожи, хром и никель используются для гальванического покрытия поверхностей металлических изделий. Соединения меди, цинка, кобальта, титана используются в качестве красителей и т.д.

К возможным источникам загрязнения биосферы тяжелыми металлами относят: предприятия черной и цветной металлургии (аэрозольные выбросы, машиностроения (гальванические ванны меднения, никелирования, хромирования), заводы по переработке аккумуляторных батарей, автомобильный транспорт.

Кроме антропогенных источников загрязнения среды обитания тяжелыми металлами существуют и другие, естественные, например вулканические извержения. Все эти источники загрязнения вызывают в биосфере или ее составляющих (воздухе, воде, почвах, живых организмах) увеличение содержания металлов-загрязнителей по сравнению с естественным, так называемым фоновым уровнем.

Период полуудаления или удаления половины от начальной концентрации составляет продолжительное время: для цинка - от 70 до 510 лет, для кадмия - от 13 до 110 лет, для меди - от 310 до 1500 лет и для свинца - от 740 до 5900 лет.

Тяжелые металлы обладают высокой способностью к многообразным химическим, физико-химическим и биологическим реакциям. Многие из них имеют переменную валентность и участвуют в окислительно-восстановительных процессах.

В качестве токсикантов в водоемах обычно встречаются: ртуть, свинец, кадмий, олово, цинк, марганец, никель, хотя известна высокая токсичность и других тяжелых металлов - кобальта, серебра, золота, урана и других. Вообще, высокая токсичность для живых существ - это характерное свойство соединений и ионов тяжелых металлов.

В ряду тяжелых металлов одни крайне необходимы для жизнеобеспечения человека и других живых организмов и относятся к так называемым биогенным элементам. Другие вызывают противоположный эффект и, попадая в живой организм, приводят к его отравлению или гибели. Эти металлы относят к классу ксенобиотиков, то есть чуждых живому. Среди металлов-токсикантов выделена приоритетная группа: кадмий, медь, мышьяк, никель, ртуть, свинец, цинк и хром как наиболее опасные для здоровья человека и животных. Из них ртуть, свинец и кадмий наиболее токсичны.

Токсическое действие тяжёлых металлов на организм усиливается тем, что многие тяжелые металлы проявляют выраженные комплексообразующие свойства. Так, в водных средах ионы этих металлов гидратированы и способны образовывать различные гидроксокомплексы, состав которых зависит от кислотности раствора. Если в растворе присутствуют какие-либо анионы или молекулы органических соединений, то ионы тяжёлых металлов образуют разнообразные комплексы различного строения и устойчивости.

К примеру ртуть, легко образуют соединения и комплексы с органическими веществами в растворах и в организме, хорошо усваиваются организмами из воды и передаются по пищевой цепи. По классу опасности ртуть относится к первому классу (чрезвычайно опасное химическое вещество). Ртуть реагирует с SH-группами белковых молекул, среди которых – важнейшие для организма ферменты. Ртуть также реагирует с белковыми группами - СООН и NH 2 с образованием прочных комплексов – металлопротеидов. А циркулирующие в крови ионы ртути, попавшие туда из легких, также образуют соединения с белковыми молекулами. Нарушение нормальной работы белков-ферментов приводит к глубоким нарушениям в организме, и прежде всего – в центральной нервной системе, а также в почках.

Особенно опасны выбросы в воду ртути, поскольку в результате деятельности населяющих дно микроорганизмов происходит образование растворимых в воде токсичных органических соединений ртути, которые намного более токсичны, чем неорганические. Обитающие там микроорганизмы превращают их в диметилртуть (CH 3) 2 Hg, которая относится к числу наиболее ядовитых веществ. Диметилртуть далее легко переходит в водорастворимый катион HgCH 3 + . Оба вещества поглощаются водными организмами и попадают в пищевую цепочку; сначала они накапливаются в растениях и мельчайших организмах, затем – в рыбах. Метилированная ртуть очень медленно выводится из организма – месяцами у людей и годами у рыб.

Тяжёлые металлы проникают в живой организм, в основном, через воду (исключением является ртуть, пары которой очень опасны). Попав в организм, тяжёлые металлы чаще всего не подвергаются каким-либо существенным превращениям, как это происходит с органическими токсикантами, и, включившись в биохимический цикл, они крайне медленно покидают его.

Важнейшим показателем качества среды обитания является степень чистоты поверхностных вод. Металл-токсикант, попав в водоем или реку, распределяется между компонентами этой водной экосистемы. Однако не всякое количество металла вызывает расстройство экосистемы.

При оценке способности экосистемы сопротивляться внешнему токсическому воздействию принято говорить о буферной емкости экосистемы. Так, под буферной емкостью пресноводных экосистем по отношению к тяжелым металлам понимают такое количество металла-токсиканта, поступление которого существенно не нарушает естественного характера функционирования всей изучаемой экосистемы.

При этом сам металл-токсикант распределяется на следующие составляющие:

Металл в растворенной форме;

Сорбированный и аккумулированный фитопланктоном, то есть растительными микроорганизмами;

Удерживаемый донными отложениями в результате седиментации взвешенных органических и минеральных частиц из водной среды;

Адсорбированный на поверхности донных отложений непосредственно из водной среды в растворимой форме;

Находящийся в адсорбированной форме на частицах взвеси.

Кроме аккумулирования металлов за счет адсорбции и последующей седиментации в поверхностных водах происходят другие процессы, отражающие устойчивость экосистем к токсическому воздействию такого рода загрязнителей. Наиболее важный из них состоит в связывании ионов металлов в водной среде растворенными органическими веществами. При этом общая концентрация токсиканта в воде не меняется. Тем не менее, принято считать, что наибольшей токсичностью обладают гидратированные ионы металлов, а связанные в комплексы опасны в меньшей мере либо даже почти безвредны. Специальные исследования показали, что между общей концентрацией металла-токсиканта в природных поверхностных водах и их токсичностью нет однозначной зависимости.

В природных поверхностных водах содержится множество органических веществ, 80% которых составляют высокоокисленные полимеры типа гумусовых веществ, проникающих в воду из почв. Остальная часть органических веществ, растворимых в воде, представляет собой продукты жизнедеятельности организмов (полипептиды, полисахариды, жирные и аминокислоты) или же подобные по химическим свойствам примеси антропогенного происхождения. Все они, конечно, претерпевают различные превращения в водной среде. Но все они в то же время являются своего рода комплексообразующими реагентами, связывающими ионы металлов в комплексы и уменьшающими тем самым токсичность вод.

Различные поверхностные воды по-разному связывают ионы тяжёлых металлов, проявляя при этом различную буферную емкость. Воды южных озер, рек, водоемов, имеющих большой набор природных компонентов (гумусовые вещества, гуминовые кислоты и фульвокислоты) и их высокую концентрацию, способны к более эффективной природной детоксикации по сравнению с водами водоемов Севера и умеренной полосы. Поэтому токсичность вод, в которых оказались загрязнители, зависит и от климатических условий природной зоны. Следует отметить, что буферная емкость поверхностных вод по отношению к металлам-токсикантам определяется не только наличием растворенного органического вещества и взвесей, но и аккумулирующей способностью гидробионтов, а также кинетикой поглощения ионов металлов всеми компонентами экосистемы, включая комплексообразование с растворенными органическими веществами. Все это говорит о сложности процессов, протекающих в поверхностных водах при попадании в них металлов-загрязнителей.

Что касается свинца, то половина от общего количества этого токсиканта поступает в окружающую среду в результате сжигания этилированного бензина. В водных системах свинец в основном связан адсорбционно со взвешенными частицами или находится в виде растворимых комплексов с гуминовыми кислотами. При биометилировании, как и в случае со ртутью, свинец в итоге образует тетраметилсвинец. В незагрязненных поверхностных водах суши содержание свинца обычно не превышает 3 мкг/л. В реках промышленных регионов отмечается более высокое содержание свинца. Снег способен в значительной степени аккумулировать этот токсикант: в окрестностях крупных городов его содержание может достигать почти 1 млн мкг/л, а на некотором удалении от них ~1-100 мкг/л.

Водные растения хорошо аккумулируют свинец, но по-разному. Иногда фитопланктон удерживает его с коэффициентом концентрирования до 105, как и ртуть. В рыбе свинец накапливается незначительно, поэтому для человека в этом звене трофической цепи он относительно мало опасен. Метилированные соединения в рыбе в обычных условиях содержания водоемов обнаруживаются относительно редко. В регионах с промышленными выбросами накопление тетраметилсвинца в тканях рыб протекает эффективно и быстро - острое и хроническое воздействие свинца наступает при уровне загрязненности 0,1-0,5 мкг/л. В организме человека свинец может накапливаться в скелете, замещая кальций.

Другой важный загрязнитель водоёмов – кадмий. По химическим свойствам этот металл подобен цинку. Он может замещать последний в активных центрах металлсодержащих ферментов, приводя к резкому нарушению в функционировании ферментативных процессов.

Кадмий обычно проявляет меньшую токсичность по отношению к растениям в сравнении с метилртутью и сопоставим по токсичности со свинцом. При содержании кадмия ~ 0,2-1 мг/л замедляются фотосинтез и рост растений. Интересен следующий зафиксированный эффект: токсичность кадмия заметно снижается в присутствии некоторых количеств цинка, что еще раз подтверждает предположение о возможности конкуренции ионов этих металлов в организме за участие в ферментативном процессе.

Порог острой токсичности кадмия варьирует в пределах от 0,09 до 105 мкг/л для пресноводных рыб. Увеличение жесткости воды повышает степень защиты организма от отравления кадмием. Известны случаи сильного отравления людей кадмием, попавшим в организм по трофическим цепям (болезнь итай-итай). Из организма кадмий выводится в течение длительного периода (около 30 лет).

В водных системах кадмий связывается с растворенными органическими веществами, особенно если в их структуре присутствует сульфгидрильные группы SH. Кадмий образует также комплексы с аминокислотами, полисахаридами, гуминовыми кислотами. Как и в случае со ртутью и другими тяжёлыми металлами адсорбция ионов кадмия донными осадками сильно зависит от кислотности среды. В нейтральных водных средах свободный ион кадмия практически нацело сорбируется частицами донных отложений.

Для контроля качества поверхностных вод созданы различные гидробиологические службы наблюдений. Они следят за состоянием загрязнения водных экосистем под влиянием антропогенного воздействия.

КОНТРОЛЬНЫЕ ВОПРОСЫ К МОДУЛЮ 3

1. Чем определяется роль Мирового океана как ключевого звена в биосфере?

2. Охарактеризуйте состав гидросферы.

3. Как взаимодействует гидросфера с другими оболочками Земли?

4. Каково значение водных растворов для живых организмов?

5. Перечислите наиболее распространенные химические элементы в составе гидросферы.

6. В каких единицах измеряется соленость морской воды?

7. На каких принципах построена классификация природных вод?

8. Химический состав природных вод.

9. Поверхностно-активные вещества в водоемах.

10. Изотопный состав воды.

11. Влияние кислотных дождей на объекты гидросферы.

12. Буферная емкость естественных водоемов.

13. Бионакопление тяжелых металлов, пестицидов, радионуклидов в организмах, обитающих в водной среде.

14. Горизонтальные и вертикальные перемещения водных масс.

15. Апвеллинг.

16. Круговорот природных вод.

17. Процессы окисления и восстановления в природных водоемах.

18. Нефтяные загрязнения природных вод.

19. Антропогенные загрязнения гидросферы.

20. Факты, характеризующие ухудшение состояния водного бассейна?

21. Приведите характеристики показателей качества воды.

22. Окисляемость грунтовых вод.

23. Основные физические свойства воды.

24. Аномалии физических свойств воды.

25. Поясните схему глобального круговорота воды?

26. Перечислите основные виды загрязнённых сточных вод.

27. Принципы оценки качества воды?

Добыча и переработка не являются наиболее мощным источником загрязнения среды металлами. Выбросы этих предприятий существенно меньше выбросов от предприятий теплоэнергетики. В угле и нефти присутствуют все металлы. Значительно больше, нежели в почве, токсичных химических элементов, включая тяжелые металлы, в золе электростанций, промышленных и бытовых топок. Выбросы в атмосферу при сжигании топлива имеют особое значение. К примеру, количество ртути, кадмия, кобальта, мышьяка в них в 3-8 раз выше количество добываемых металлов. Существуют данные о том, что только один котел современной ТЭЦ, работающий на угле, за год выбрасывает в атмосферу в среднем 1-1,5 т паров ртути. Тяжелые металлы содержатся и в минеральных удобрениях.

Наравне со сжиганием минерального топлива важнейшим путем техногенного рассеяния металлов является их выброс в атмосферу при пирогенных технологических процессах (металлургия, обжиг цементного сырья и др.), а также транспортировка, обогащение и сортировка руды.

Техногенное поступление тяжелых металлов в окружающую среду происходит в виде газов и аэрозолей и в составе сточных вод. Металлы сравнительно бурно накапливаются в почве и крайне медленно из нее выводятся: период полуудаления цинка - до 450 лет, кадмия - до 1000 лет, меди - до 1400 лет. Значимый источник загрязнения почвы металлами - применение удобрений из шламов, полученных из промышленных и канализационных очистных сооружений. В выбросах металлургических производств тяжелые металлы находятся, в основном, в нерастворимой форме. По мере удаления от источника загрязнения наиболее крупные частицы оседают, доля растворимых соединений металлов увеличивается, и устанавливаются соотношения между растворимой и нерастворимыми формами. Аэрозольные загрязнения, поступающие в атмосферу, удаляются из нее путем естественных процессов самоочищения. Главную роль при этом играют атмосферные осадки. В последствии выбросы промышленных предприятий в атмосферу, сбросы сточных вод формируют предпосылки для поступления тяжелых металлов в почву, подземные воды и открытые водоемы, в растения, донные отложения и животных. Дальность распространения и уровни загрязнения атмосферы зависят от мощности источника, условий выбросов и синоптической обстановки. Но в условиях промышленно-городских агломераций и городской застройки параметры распространения металлов в воздухе еще плохо прогнозируются. С удалением от источников загрязнения уменьшение концентраций аэрозолей металлов в атмосферном воздухе чаще происходит по экспоненте, вследствие чего зона их интенсивного воздействия, в которой имеет место превышение ПДК, сравнительно невелика. В условиях урбанизированных зон итоговый эффект от регистрируемого загрязнения воздуха является результирующей сложения множества полей рассеяния и обусловлен удалением от источников выбросов, градостроительной структурой и наличием необходимых санитарно-защитных зон вокруг предприятий. Природное содержание тяжелых металлов в экологически чистой атмосфере составляет тысячные и десятитысячные доли микрограмма на кубический метр и ниже. Данные уровни в современных условиях на сколько-нибудь обжитых территориях практически не наблюдается. К основным отраслям, с которыми связано загрязнение окружающей среды ртутью, относят горнодобывающую, металлургическую, химическую, приборостроительную, электровакуумную и фармацевтическую. Наиболее интенсивные источники загрязнения окружающей среды кадмием - металлургия и гальванопокрытия, а также сжигание твердого и жидкого топлива. Воздушный путь поступления химических элементов в окружающую среду городов является ведущим. Но уже на небольшом удалении, в частности, в зонах пригородного сельского хозяйства, относительная роль источников загрязнения окружающей среды тяжелыми металлами может измениться и наибольшую опасность будут представлять сточные воды и отходы, накапливаемые на свалках и применяемые в качестве удобрений. Наибольшей способностью концентрировать тяжелые металлы обладают взвешенные вещества и грунтовые отложения, затем планктон, бентос и рыбы. Тяжелые металлы относятся к наиболее распространённым загрязнителям воды, почвы и воздуха. Об их токсичности разрешено судить по тому к какому классу опасности они относятся и каким образом они влияют на обмен веществ и состояние здоровья человека. Различают растворимую и дисперсную формы нахождения металлов в воде и почве. Тяжелые металлы относятся к группе неконсервативных металлов, то есть их содеpжание в воде, почве, активном и сбpоженном иле зависит от темпеpатуpы, солесодеpжания, наличия неоpганических и оpганических комплексообразователей, биологической активности, вpемени года величины pH.(в соответствии с рисунком 3)

Рисунок 3.Загрязнение воды тяжелыми металлами

Тяжелые металлы поступают в почву и водоемы из атмосфеpы или пpи сбpосе неочищенных сточных вод концентpация металлов в осадках на много поpядков выше, чем в воде. В почве, тоpфе концентpиpование тяжелых металлов пpоисходит по механизму ионного обмена. пеpенос тяжелых металлов может пpоисходить в pезультате обpазования водоpаствоpимых оpганических и неоpганических комплексов. Хаpактеpным считается пpоявление токсических свойств тяжелых металлов пpи их одновpеменном пpисутствии. Таким образом, пpи наличии меди и цинка токсичность смеси возрастает в 5 pаз по сpавнению с сумаpным результатом. В системах, где имеется недостаток pаствоpенного кислоpода увеличивается токсичность цинка, свинца, меди. Соpбция тяжеллых металлов почвой зависит от ее механической, физико-химической (обменной) ,химической и биологической способности.

Поглощенные почвой ионы могут заменять в кpисталической pешетке находившейся в ней катионы, обpазовывать комплексные соединения с оpганическими компонентами почвы, напpимеp, с гуминовыми соединениями. Гуминовые соединения в щелочной и нейтpальной сpеде обpазуют комплексные соединения с тяжелыми металлами. В пpактике очистки пpоизводственных сточных вод в сегодняшнее вpемя обретают менбpанные технологии, электpохимическая обpаботка. Ионы цинка, хpома, меди, никеля, отлично извлекаются из воды методом ионного обмена. Обменнаяемкость по иону никеля составляет 63 мг. на 1 г.ионита. Так как стоимость полимеpных ионитов значительна,то для очистки воды от тяжелых металлов pазpабатываются методы,котоpых используются побочные пpодукты отходы пpоизводства (шлаки, зола), пpиpодные матеpиалы (тоpф, глина). Главные пpинцепы пеpеpаботки токсичных осадков сточных вод с целью извлечения из них тажелых металлов описанных в pаботе.

Добывание тяжелых металлов пpоизводится из золы получаемой пpи сжигании этих осадков. В сегодняшнее время в биосферу поступает сверх 500 тыс. разновидностей химических веществ - продуктов хозяйственной деятельности, большая часть которых накапливается в почве. Среди загрязнителей значительное место занимают тяжелые металлы.

В зависимости от концентрации в природной среде их определяют либо как микроэлементы, либо как тяжелые металлы. Но существует группа металлов, за которыми закрепилось только одно определение - «тяжелые» в смысле «токсичные». К ним относятся ртуть, кадмий, свинец, таллий и некоторые другие элементы. Их считают наиболее опасными загрязнителями окружающей среды наряду с такими металлоидами, как мышьяк.

Главные источники антропогенного поступления тяжелых металлов в природную среду - тепловые электростанции, металлургические предприятия, карьеры и шахты по добыче полиметаллических руд, автотранспорт, химические средства защиты сельскохозяйственных культур от заболеваний и вредителей. Особенно мощные потоки тяжелых металлов возникают вокруг предприятий черной, особенно цветной металлургии, в результате атмосферных выбросов. Загрязнение природной среды токсинами происходит, в результате работы промышленных комплексов, а не отдельных предприятий. Учитывая, что плотность потока выпадающих металлов на подстилающую поверхность пропорциональна их концентрации в воздухе, с помощью специальных методик оценивают конкретный источник поступления металлов в окружающую среду.

Основные источники антропогенных выбросов вредных веществ в атмосферу сосредоточены в областях Северного Казахстана и Южного, т.е. в Северном полушарии. Содержание металлов в атмосфере колеблется в широком диапазоне и зависит от расстояния от источника загрязнения, характера подстилающей поверхности и синоптических условий в момент измерения. Летучесть металлов обусловлена тем, что они связаны в атмосфере с субмикронными частицами, которые в воздухе ведут себя практически как газ. Загрязняющие вещества в атмосфере захватываются дождевыми каплями или снежинками и выпадают с осадками или на поверхность Земли в виде сухих выпадений. Индустриальные источники аэрогенного загрязнения почвы металлами локализованы в пространстве, поэтому они делают высокие уровни загрязнения почв в ограниченных районах (в соответствии с рисунком 4).


Рисунок.4.Загрязнение почв бытовым мусором

В зависимости от высоты и дисперсного состава выбросов в локальной зоне загрязнения выпадает 15-20% количества металлов, поступивших в атмосферу. Конфигурация изолиний содержания металла в почве вокруг источника выбросов в основном соответствует климатической розе ветров. Поступление металлов в почву вблизи источников выбросов происходит обычно в форме нерастворимых соединений.

Подвижность тяжелых металлов в почвах

Модификация соединений тяжелых металлов, поступающих в почву, включает в себя следующие процессы: растворение, адсорбирование катионов тяжелых металлов твердой фазой почв, образование последней твердой фазы. Основными процессом, контролирующим содержание водорастворимых форм тяжелых металлов в почвах, подверженных техногенному загрязнению, считается адсорбционно-десорбционное равновесие.

Известно, что после внесения оксидов тяжелых металлов содержание их подвижных форм практически не отличалось от содержания в почве, в которую вносили водорастворимые соли этих же тяжелых металлов. Со временем во всех почвах содержание водорастворимой, обменной и непрочно связанной форм тяжелых металлов снизилось, а прочносвязанной форм - повышалось. Концентрация тяжелых металлов в почвенном растворе - главная экологическая характеристика почвы, она определяет миграцию тяжелых металлов по профилю и поглощение их растениями. Изменение влажности почв, энергичности микробиоты влияют на кислотно-основное и окислительно-восстановительное равновесие, содержание хелатообразующих соединений, состав почвенной атмосферы, и все это в свою очередь сказывается на подвижности тяжелых металлов. В поглощении тяжелых металлов почвами действуют 2 механизма: первый включает адсорбцию с образованием внешне- и внутри сферных комплексных соединений с минеральными и органическими компонентами почв; второй состоит в осаждении из почвенного раствора тяжело растворимых соединений, т.е. в образовании повторной твердой фазы. В последующей судьбе металлов, образующих прочные связи с кислородом и серой, большую роль играет сложное образование с органическим веществом. При очень высокой концентрации металла в растворе начинается осаждение вторичной твердой фазы: гидроксидов железа, алюминия, карбонатов кальция, магния, сульфидов цинка, кадмия, ртути. При этом концентрация металла в растворе зависит от аниона, обеспечивающего минимальную растворимость катиона.

Тяжелые металлы — очень опасные токсические вещества. В наши дни, мониторинг уровня разных таких веществ особо важен в промышленных и городских районах.

Хотя все знают, что такое тяжелые металлы , не все знают какие химические элементы всё-таки входят в эту категорию. Есть очень много критерий, по которому, разные учёные определяют тяжелые металлы: токсичность, плотность, атомная масса, биохимические и геохимические циклы, распространение в природе. По одним критериям в число тяжелых металлов входят мышьяк (металлоид) и висмут (хрупкий металл).

Общие факты про тяжелые металлы

Известно более 40 элементов, которые относят к тяжелым металлам. Они имеют атомную массу больше 50 а.е. Как не странно именно эти элементы обладают большой токсичностью даже при малой кумуляции для живых организмов. V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo…Pb, Hg, U, Th…все они входят в эту категорию. Даже при их токсичности, многие из них являются важными микроэлементами , кроме кадмия, ртути, свинца и висмута для которых не нашли биологическую роль.


По другой классификации (а именно Н. Реймерса) тяжелые металлы — это элементы которые имеют плотность больше 8 г/см 3 . Таким образом получится меньше таких элементов: Pb, Zn, Bi, Sn, Cd, Cu, Ni, Co, Sb.

Теоретически, тяжелыми металлами можно назвать всю таблицу элементов Менделеева начиная с ванадия, но исследователи нам доказывают, что это не совсем так. Такая теория вызвана тем, что не все они присутствуют в природе в токсических пределах, да и замешательство в биологических процессах для многих минимальна. Вот почему в эту категорию многие включают только свинец, ртуть, кадмий и мышьяк. Европейская Экономическая Комиссия ООН не согласна с этим мнением и считает что тяжелые металлы это — цинк, мышьяк, селен и сурьма. Тот же Н. Реймерс считает, что удалив редкие и благородные элементы из таблицы Менделеева, остаются тяжелые металлы. Но и это тоже не правило, другие к этому классу добавляют и золото, платину, серебро, вольфрам, железо, марганец. Вот почему я вам говорю, что не всё ещё понятно по этой теме…

Обсуждая про баланс ионов различных веществ в растворе, мы обнаружим, что растворимость таких частиц связанно со многими факторами. Главные факторы солюбилизации являются рН, наличие лигандов в растворе и окислительно-восстановительный потенциал. Они причастны к процессам окисления этих элементов с одной степени окисления к другой, в которой растворимость иона в растворе выше.

В зависимости от природы ионов, в растворе могут происходить различные процессы:

  • гидролиз,
  • комплексообразование с разными лигандами;
  • гидролитическая полимеризация.

Из-за этих процессов, ионы могут переходить в осадок или оставаться стабильными в растворе. От этого зависит и каталитические свойства определённого элемента, и его доступность для живых организмов.

Многие тяжелые металлы образуют с органическими веществами довольно стабильные комплексы. Эти комплексы входят в механизм миграции этих элементов в прудах. Почти все хелатные комплексы тяжелых металлов устойчивы в растворе. Также, комплексы почвенных кислот с солями разных металлов (молибден, медь, уран, алюминий, железо, титан, ванадий) имеют хорошую растворимость в нейтральной, слабощелочной и слабокислой среды. Это факт очень важен, потому что такие комплексы могут продвигаться в растворенном состоянии на большие расстояния. Самые подверженные водные ресурсы — это маломинерализованные и поверхностные водоёмы, где не происходит образование других таких комплексов. Для понимания факторов, которые регулируют уровень химического элемента в реках и озерах, их химическую реакционную способность, биологическую доступность и токсичность, необходимо знать не только валовое содержание, но и долю свободных и связанных форм металла.

В результате миграции тяжелых металлов в металлокомплексы в растворе могут произойти такие последствия:

  1. В первых, увеличивается кумуляция ионов химического элемента за счёт перехода этих из донных отложений в природные растворы;
  2. Во вторых, возникает возможность изменения мембранной проницаемости полученных комплексов в отличие от обычных ионов;
  3. Также, токсичность элемента в комплексной форме может отличаться от обычной ионной формы.

Например, кадмий, ртуть и медь в хелатные формы, имеют меньшую токсичность, чем свободные ионы. Вот почему не правильно говорить о токсичности, биологической доступности, химической реакционной способности только по общему содержанию определённого элемента, при этом, не учитывая долю свободных и связанных форм химического элемента.

Откуда же берутся тяжелые металлы в нашу среду обитания? Причины присутствия таких элементов могут быть сточные воды с разных промышленных объектов занимающийся черной и цветной металлургией, машиностроением, гальванизацией. Некоторые химические элементы входят в состав пестицидов и удобрений и таким образом могут быть источником загрязнения местных прудов.

А если войти в тайны химии, то самым главным виновником повышения уровня растворимых солей тяжелых металлов является кислотные дожди (закисление). Понижение кислотности среды (уменьшение рН) тянет за собою переход тяжелых металлов из малорастворимых соединений (гидроксиды, карбонаты, сульфаты) в более хорошо растворимые (нитраты, гидросульфаты, нитриты, гидрокарбонаты, хлориды) в почвенном растворе.

Ванадий (V)

Надо отметить в первую очередь, что загрязнение этим элементом натуральными способами маловероятна, потому что этот элемент очень рассеян в Земной коре. В природе обнаруживается в асфальтах, битумах, углях, железных рудах. Важным источником загрязнения является нефть.

Содержание ванадия в природных водоёмах

Природные водоёмы содержит ничтожное количество ванадия:

  • в реках — 0,2 — 4,5 мкг/л,
  • в морях (в среднем) — 2 мкг/л.

В процессах перехода ванадия в растворённом состоянии очень важны анионные комплексы (V 10 O 26) 6- и (V 4 O 12) 4- . Также очень важны растворимые ванадиевые комплексы с органическими веществами, типа гумусовых кислот.

Предельно-допустимая концентрация ванадия для водной среды

Ванадий в повышенных дозах очень вреден для человека. Предельно-допустимая концентрация для водной среды (ПДК) составляет 0,1 мг/л, а в рыбохозяйственных прудах, ПДК рыбхоз ещё ниже — 0,001 мг/л.

Висмут (Bi)

Главным образом, висмут может поступать в реки и озера в результате процессов выщелачивания минералов содержащих висмут. Есть и техногенные источники загрязнения этим элементом. Это могут быть предприятия по производству стекла, парфюмерной продукций и фармацевтические фабрики.

Содержание висмута в природных водоёмах

  • Реки и озера содержат меньше микрограмма висмута на литр.
  • А вот подземные воды могут содержать даже 20 мкг/л.
  • В морях висмут как правило не превышает 0,02 мкг/л.

Предельно-допустимая концентрация висмута для водной среды

ПДК висмута для водной среды — 0,1 мг/л.

Железо (Fe)

Железо — химический элемент не редкий, оно содержится во многих минералах и пород и таким образом в природных водоёмах уровень этого элемента повыше других металлов. Оно может происходить в результате процессов выветривания горных пород, разрушения этих пород и растворением. Образуя разные комплексы с органическими веществами из раствора, железо может быть в коллоидальном, растворённом и в взвешенном состояниях. Нельзя не упомнить про антропогенные источники загрязнения железом. Сточные воды с металлургических, металлообрабатывающих, лакокрасочных и текстильных заводов зашкаливают иногда из-за избытка железа.

Количество железа в реках и озерах зависит от химического состава раствора, рН и частично от температуры. Взвешенные формы соединений железа имеют размер более 0,45 мкг. Основные вещества которые входят в состав этих частиц являются взвеси с сорбированными соединениями железа, гидрата оксида железа и других железосодержащих минералов. Более малые частицы, то есть коллоидальные формы железа, рассматриваются совместно с растворенными соединениями железа. Железо в растворённом состоянии состоит из ионов, гидроксокомплексов и комплексов. В зависимости от валентности замечено что Fe(II) мигрирует в ионной форме, а Fe(III) в отсутствии разных комплексов остаётся в растворённом состоянии.

В балансе соединений железа в водном растворе, очень важно и роль процессов окисления, так химического так и биохимического (железобактерии). Эти бактерии ответственны за переход ионов железа Fe(II) в состояние Fe(III). Соединения трехвалентного железа имеют склонность гидролизовать и выпадать в осадок Fe(OH) 3 . Как Fe(II), так и Fe(III) склоны к образованию гидроксокомплексов типа — , + , 3+ , 4+ , + , в зависимости от кислотности раствора. В нормальных условиях в реках и озерах, Fe(III) находятся в связи с разными растворёнными неорганическими и органическими веществами. При рН больше 8, Fe(III) переходит в Fe(OH) 3 . Коллоидные формы соединений железа самые малоизучены.

Содержание железа в природных водоёмах

В реках и озерах уровень железа колеблется на уровне n*0,1 мг/л, но может повыситься вблизи болот до несколько мг/л. В болотах железо концентрируется в форме солей гуматов (соли гуминовых кислот).

Подземные водохранилища с низким рН содержат рекордные количества железа — до нескольких сотен миллиграммов на литр.

Железо — важный микроэлемент и от него зависят разные важные биологические процессы. Оно влияет на интенсивность развития фитопланктона и от него зависит качество микрофлоры в водоёмах.

Уровень железа в реках и озерах имеет сезонный характер. Самые высокие концентрации в водоёмах наблюдаются зимою и летом из-за стагнации вод, а вот весною и осенью заметно снижается уровень этого элемента по причине перемешивания водных масс.

Таким образом, большое количество кислорода ведёт к окислению железа с двухвалентной формы в трехвалентной, формируясь гидроксид железа, который падает в осадок.

Предельно-допустимая концентрация железа для водной среды

Вода с большим количеством железа (больше 1-2 мг/л) характеризуется плохими вкусовыми качествами. Она имеет неприятный вяжущий вкус и непригодна для промышленных целей.

ПДК железа для водной среды — 0,3 мг/л, а в рыбохозяйственных прудах ПДК рыбхоз — 0,1 мг/л.

Кадмий (Cd)

Загрязнение кадмием может возникнуть во время выщелачивания почв, при разложения разных микроорганизмов которые его накапливают, а также из-за миграции из медных и полиметаллических руд.

Человек тоже виноват в загрязнении этим металлом. Сточные воды с разных предприятий занимающеюся рудообогащением, гальваническим, химическим, металлургическим производством могут содержать большие количества соединений кадмия.

Естественные процессы по снижению уровня соединений кадмия являются сорбция, его потребление микроорганизмами и выпадение в осадок малорастворимого карбоната кадмия.

В растворе, кадмий находится, как правило, в форме органо-минеральных и минеральных комплексов. Сорбированные вещества на базе кадмия — важнейшие взвешенные формы этого элемента. Очень важна миграция кадмия в живых организмов (гидробиониты).

Содержание кадмия в природных водоёмах

Уровень кадмия в чистых реках и озерах колеблется на уровне меньше микрограмма на литр, в загрязнённых водах уровень этого элемента доходит до нескольких микрограммов на литр.

Некоторые исследователи считают, что кадмий, в малых количествах, может быть важным для нормального развития животных и человека. Повышенные концентрации кадмия очень опасных для живых организмов.

Предельно-допустимая концентрация кадмия для водной среды

ПДК для водной среды не превышает 1 мкг/л, а в рыбохозяйственных прудах ПДК рыбхоз — меньше 0,5 мкг/л.

Кобальт (Co)

Реки и озера могут загрязниться кобальтом как следствие выщелачивания медных и других руд, из почв во время разложения вымерших организмов (животные и растения), ну и конечно же в результате активности химических, металлургических и металлообрабатывающих предприятии.

Главные формы соединений кобальта находится в растворенном и взвешенном состояниях. Вариации между этими двумя состояниями могут происходить, из-за изменений рН, температуры и состава раствора. В растворённом состоянии, кобальт содержится в виде органических комплексов. Реки и озера имеют характерность, что кобальт представлен двухвалентным катионом. При наличии большого количества окислителей в растворе, кобальт может окисляться до трехвалентного катиона.

Он входит в состав растений и животным, потому что играет важную роль в их развитии. Входит в число основных микроэлементов. Если в почве наблюдается дефицит кобальта, то его уровень в растениях будет меньше обычного и как следствие могут появиться проблемы со здоровьем у животных (возникает риск возникновения малокровия). Этот факт наблюдается особенно в таежно-лесной нечерноземной зоне. Он входит в состав витамина В 12 , регулирует усвоение азотистых веществ, повышает уровень хлорофилла и аскорбиновой кислоты. Без него растения не могут наращивать необходимое количество белка. Как и все тяжелые металлы, он может быть токсичным в больших количествах.

Содержание кобальта в природных водоёмах

  • Уровень кобальта в реках варьирует от несколько микрограммов до миллиграммов на литр.
  • В морях в среднем уровень кадмия — 0,5 мкг/л.

Предельно-допустимая концентрация кобальта для водной среды

ПДК кобальта для водной среды — 0,1 мг/л, а в рыбохозяйственных прудах ПДК рыбхоз — 0,01 мг/л.

Марганец (Mn)

Марганец поступает в реки и озера по таким же механизмам, как и железо. Главным образом, освобождение этого элемента в растворе происходит при выщелачивании минералов и руд, которые содержат марганец (черная охра, браунит, пиролюзит, псиломелан). Также марганец может поступать вследствие разложения разных организмов. Промышленность имеет, думаю, самую большую роль в загрязнении марганцем (сточные воды с шахт, химическая промышленность, металлургия).

Снижение количества усваиваемого металла в растворе происходит, как и в случае с другими металлами при аэробных условиях. Mn(II) окисляется до Mn(IV), вследствие чего выпадает в осадок в форме MnO 2 . Важными факторами при таких процессах считаются температура, количество растворённого кислорода в растворе и рН. Снижение растворённого марганца в растворе может возникнуть при его употреблении водорослями.

Мигрирует марганец в основном в форме взвеси, которые, как правило, говорят о составе окружающих пород. В них он содержится как смесь с другими металлами в виде гидроксидов. Преобладание марганца в коллоидальной и растворенной форме говорят о том что он связан с органическими соединениями образуя комплексы. Стабильные комплексы замечаются с сульфатами и бикарбонатами. С хлором, марганец образует комплексы реже. В отличие от других металлов, он слабее удерживается в комплексах. Трехвалентный марганец образует подобные соединения только при присутствии агрессивных лигандов. Другие ионные формы (Mn 4+ , Mn 7+)менее редки или вовсе не встречаются в обычных условиях в реках и озерах.

Содержание марганца в природных водоёмах

Самыми бедными в марганце считаются моря — 2 мкг/л, в реках содержание его больше — до 160 мкг/л, а вот подземные водохранилища и в этот раз являются рекордсменами — от 100 мкг до несколько мг/л.

Для марганца характерны сезонные колебания концентрации, как и у железа.

Выявлено множество факторов, которые влияют на уровень свободного марганца в растворе: связь рек и озер с подземными водохранилищами, наличие фотосинтезирующих организмов, аэробные условия, разложение биомассы (мертвые организмы и растения).

Немаловажная биохимическая роль этого элемента ведь он входит в группу микроэлементов. Многие процессы при дефиците марганца угнетаются. Он повышает интенсивность фотосинтеза, участвует в метаболизме азота, защищает клетки от негативного воздействия Fe(II) при этом окисляя его в трехвалентную форму.

Предельно-допустимая концентрация марганца для водной среды

ПДК марганца для водоёмов — 0,1 мг/л.

Медь (Cu)

Такой важной роли для живых организмов не имеет ни один микроэлемент! Медь — один из самых востребованных микроэлементов. Он входит в состав многих ферментов. Без него почти ничего не работает в живом организме: нарушается синтез протеинов, витаминов и жиров . Без него растения не могут размножаться. Всё-таки избыточное количество меди вызывает большие интоксикации во всех типов живых организмов.

Уровень меди в природных водоёмах

Хотя медь имеет две ионные формы, чаще всего в растворе встречается Cu(II). Обычно, соединения Cu(I) трудно растворимые в растворе (Cu 2 S, CuCl, Cu 2 O). Могут возникнуть разные акваионны меди при наличии всяких лигандов.

При сегодняшнем высоком употреблении меди в промышленности и сельское хозяйство, этот металл может послужить причиной загрязнения окружающей среды. Химические, металлургические заводы, шахты могут быть источниками сточных вод с большим содержанием меди. Процессы эрозии трубопроводов тоже имеют свои вклад в загрязнении медью. Самыми важными минералами с большим содержанием меди считаются малахит, борнит, халькопирит, халькозин, азурит, бронтантин.

Предельно-допустимая концентрация меди для водной среды

ПДК меди для водной среды считается 0,1 мг/л, в рыбохозяйственных прудах ПДК рыбхоз меди уменьшается до 0,001 мг/л.

Молибден (Mo)

Во время выщелачивания минералов с высоким содержанием молибдена, освобождаются разные соединения молибдена. Высокий уровень молибдена может замечаться в реках и озерах, которые находятся рядом с фабриками по обогащению и предприятиями занимающиеся цветной металлургией. Из-за разных процессов осаждения труднорастворимых соединений, адсорбции на поверхности разных пород, а также употребления водными водорослями и растениями, его количество может заметно уменьшится.

В основном в растворе, молибден может находиться в форме аниона MoO 4 2- . Есть вероятность присутствия молибденоорганических комплексов. Из-за того что при окисления молибденита формируются рыхлые мелкодисперсные соединения, повышается уровень коллоидального молибдена.

Содержание молибдена в природных водоёмах

Уровень молибдена в реках колеблется между 2,1 и 10,6 мкг/л. В морях и океанах его содержание — 10 мкг/л.

При малых концентрациях, молибден помогает нормальному развитию организма (так растительного, как и животного), ведь он входит в категорию микроэлементов. Также он является составной частью разных ферментов как ксантиноксилазы. При недостатке молибдена возникает дефицит этот фермента и таким образом могут проявляться отрицательные эффекты. Избыток этого элемента тоже не приветствуется, потому что нарушается нормальный обмен веществ.

Предельно-допустимая концентрация молибдена для водной среды

ПДК молибдена в поверхностных водоёмах должен не превышать 0,25 мг/л.

Мышьяк (As)

Загрязнены мышьяком в основном районы, которые находятся близко к минеральным рудников с высоким содержанием этого элемента (вольфрамовые, медно-кобальтовые, полиметаллические руды). Очень малое количество мышьяка может произойти при разложении живых организмов. Благодаря водным организмам, он может усваиваться этими. Интенсивное усваивание мышьяка из раствора замечается в период бурного развития планктона.

Важнейшими загрязнителями мышьяком считаются обогатительная промышленность, предприятия по производству пестицидов , красителей, а также сельское хозяйство.

Озера и реки содержат мышьяк в два состояния: во взвешенном и растворённом. Пропорции между этими формами может меняться в зависимости от рН раствора и химической композиции раствора. В растворённом состоянии, мышьяк может быть трехвалентном или пятивалентном, входя в анионные формы.

Уровень мышьяка в природных водоёмах

В реках, как правило, содержание мышьяка очень низкое (на уровне мкг/л), а в морях — в среднем 3 мкг/л. Некоторые минеральные воды могут содержать большие количества мышьяка (до несколько миллиграммов на литр).

Больше всего мышьяка могут, содержат подземные водохранилища — до несколько десяток миллиграммов на литр.

Его соединения очень токсичны для всех животных и для человека. В больших количествах, нарушаются процессы окисления и транспорт кислорода к клеткам.

Предельно-допустимая концентрация мышьяка для водной среды

ПДК мышьяка для водной среды — 50 мкг/л, а в рыбохозяйственных прудах ПДК рыбхоз — тоже 50 мкг/л.

Никель (Ni)

На содержание никеля в озерах и реках влияют местные породы. Если рядом с водоёмом находятся месторождения никелевых и железно-никелевых руд концентрации могут быть и ещё больше нормального. Никель может поступить в озера и реки при разложении растениях и животных. Сине-зеленые водоросли содержат рекордные количества никеля по сравнению с другими растительными организмами. Важные отходные воды с высоким содержанием никеля освобождаются при производстве синтетического каучука, при процессах никелирования. Также никель в больших количествах освобождается во время сжигания угля, нефти.

Высокий рН может послужить причиной осаждения никеля в форме сульфатов, цианидов, карбонатов или гидроксидов. Живые организмы могут снизить уровень подвижного никеля, употребляя его. Важны и процессы адсорбции на поверхности пород.

Вода может содержать никель в растворённой, коллоидальной и взвешенной формах (баланс между этими состояниями зависит от рН среды, температуры и состава воды). Гидроксид железа, карбонат кальция, глина хорошо сорбируют соединения содержащие никель. Растворённый никель находится в виде комплексов с фульвовой и гуминовой кислот, а также с аминокислотами и цианидами. Самой стабильной ионной формой считается Ni 2+ . Ni 3+ , как правило, формируется при большом рН.

В середине 50ых годов никель был внесён в список микроэлементов, потому что он играет важную роль в разных процессах как катализатор. В низких дозах он имеет положительный эффект на кроветворные процессы. Большие дозы всё-таки очень опасны для здоровья, ведь никель — канцерогенный химический элемент и может спровоцировать разные заболевания дыхательной системы. Свободный Ni 2+ более токсичный, чем в форме комплексов (примерно в 2 раза).

Уровень никеля в природных водоёмах

Предельно-допустимая концентрация никеля для водной среды

ПДК никеля для водной среды — 0,1 мг/л, а вот в рыбохозяйственных прудах ПДК рыбхоз — 0,01 мг/л.

Олово (Sn)

Природными источниками олова являются минералы, которые содержат этот элемент (станнин, касситерит). Антропогенными источниками считаются заводы и фабрики по производству разных органических красок и металлургическая отрасль работающая с добавлением олова.

Олово — малотоксичный металл, вот почему употребляя пищу из металлических консервов мы не рискуем своим здоровьем.

Озера и реки содержат меньше микрограмма олова на литр воды. Подземные водохранилища могут содержать и несколько микрограммов олова на литр.

Предельно-допустимая концентрация олова для водной среды

ПДК олова для водной среды — 2 мг/л.

Ртуть (Hg)

Главным образом, повышенный уровень ртути в воде замечается в районах где есть месторождения ртути. Самые частые минералы — ливингстонит, киноварь, метациннабарит. Сточная вода с предприятий по производству разных лекарств, пестицидов, красителей может содержать важные количества ртути. Другим важным источником загрязнения ртутью считаются тепловые электростанции (которые используют как горючее уголь).

Его уровень в растворе уменьшается главным образом за счёт морских животных и растений, которые накапливают и даже концентрировать ртуть! Иногда содержание ртути в морских обитателей поднимается в несколько раз больше чем в морской среде.

Природная вода содержит ртуть в две формы: взвешенную (в виде сорбированных соединений) и растворённую (комплексные, минеральные соединения ртути). В определённых зонах океанов, ртуть может появляться в виде метилртутных комплексов.

Ртуть и его соединения очень токсичны. При больших концентрациях, имеет отрицательное действие на нервную систему, провоцирует изменения в крови, поражает секрецию пищеварительного тракта и двигательную функцию. Очень опасны продукты переработки ртути бактериями. Они могут синтезировать органические вещества на базе ртути, которые во много раз токсичнее неорганических соединений. При употреблении рыбы, соединения ртути могут попасть в наш организм.

Предельно-допустимая концентрация ртути для водной среды

ПДК ртути в обычной воде — 0,5 мкг/л, а в рыбохозяйственных прудах ПДК рыбхоз — меньше 0,1 мкг/л.

Свинец (Pb)

Реки и озера могут загрязняться свинцом натуральным путём при смывании минералов свинца (галенит, англезит, церуссит), так и антропогенным путём (сжигание угля, применение тетраэтилсвинца в топливе, сбросы фабрик по рудообогащению, сточные воды с шахт и металлургических заводов). Осаждение соединений свинца и адсорбция этих веществ на поверхности разных пород являются важнейшими натуральными методами понижения его уровня в растворе. Из биологических факторов, к уменьшению уровня свинца в растворе ведут гидробионты.

Свинец в реках и озерах находится во взвешенной и растворённой форме (минеральные и органоминеральные комплексы). Также свинец находится в виде нерастворимых веществ: сульфаты, карбонаты, сульфиды.

Содержание свинца в природных водоёмах

Про токсичность этого тяжелого металла мы наслышаны. Он — очень опасный даже при малых количествах и может стать причиной интоксикации. Проникновение свинца в организм осуществляется через дыхательную и пищеварительную систему. Его выделение из организма протекает очень медленно, и он способен накапливаться в почках, костях и печени.

Предельно-допустимая концентрация свинца для водной среды

ПДК свинца для водной среды — 0,03 мг/л, а в рыбохозяйственных прудах ПДК рыбхоз — 0,1 мг/л.

Тетраэтилсвинец

Он служит в качестве антидетонатора в моторном топливе. Таким образом, основными источниками загрязнения этим веществом — транспортные средства.

Это соединение — очень токсичное и может накапливаться в организме.

Предельно-допустимая концентрация тетраэтилсвинца для водной среды

Предельно-допустимый уровень этого вещества приближается к нулю.

Тетраэтилсвинец вообще не допускается в составе вод.

Серебро (Ag)

Серебро главным образом попадает в реки и озера из подземных водохранилищах и как следствие сброса сточных вод с предприятий (фотопредприятия, фабрики по обогащению) и рудников. Другим источником серебра могут быть альгицидные и бактерицидные средства.

В растворе, самые важные соединения являются галоидные соли серебра.

Содержание серебра в природных водоёмах

В чистых реках и озерах, содержание серебра — меньше микрограмма на литр, в морях — 0,3 мкг/л. Подземные водохранилища содержат до несколько десяток микрограммов на литр.

Серебро в ионной форме (при определённых концентрациях) имеет бактериостатический и бактерицидный эффект. Для того чтобы можно было стерилизовать воду при помощи серебра, его концентрация должна быть больше 2*10 -11 моль/л. Биологическая роль серебра в организм ещё недостаточно известна.

Предельно-допустимая концентрация серебра для водной среды

Предельно-допустимая серебра для водной среды — 0,05 мг/л.


Загрязнение почв тяжелыми металлами имеет разные источники:

1. отходы металлообрабатывающей промышленности;

2. промышленные выбросы;

3. продукты сгорания топлива;

4. автомобильные выхлопы отработанных газов;

5. средства химизации сельского хозяйства.

Металлургические предприятия ежегодно выбрасывают на поверхность земли более 150 тыс. тонн меди, 120 тыс. тонн цинка, около 90 тыс. тонн свинца, 12 тыс. тонн никеля, 1,5 тыс. тонн молибдена, около 800 тонн кобальта и около 30 тонн ртути. На 1 грамм черновой меди отходы медеплавильной промышленности содержат 2,09 тонн пыли, в составе которой содержится до 15% меди, 60% окиси железа и по 4% мышьяка, ртути, цинка и свинца. Отходы машиностроительных и химических производств содержат до 1 тыс. мг/кг свинца, до 3 тыс. мг/кг меди, до 10 тыс. мг/кг хрома и железа, до 100 г/кг фосфора и до 10 г/кг марганца и никеля. В Силезии вокруг цинковых заводов громоздятся отвалы с содержанием цинка от 2 до 12% и свинца от 0,5 до 3%, а в США эксплуатируют руды с содержанием цинка 1,8%.

С выхлопными газами на поверхность почв попадает более 250 тыс. тонн свинца в год; это главный загрязнитель почв свинцом.

Тяжелые металлы попадают в почву вместе с удобрениями, в состав которых они входят как примесь, а также и с биоцидами.

Л. Г. Бондарев (1976) подсчитал возможные поступления тяжелых металлов на поверхность почвенного покрова в результате производственной деятельности человека при полном исчерпании рудных запасов, в сжигании имеющихся запасов угля и торфа и сравнение их с возможными запасами металлами, аккумулированных в гумосфере к настоящему времени. Полученная картина позволяет составить представление о тех изменениях, которые человек в состоянии вызвать в течение 500-1000 лет, на которые хватит разведанных полезных ископаемых.

Возможное поступление металлов в биосферу при исчерпании достоверных запасов руд, угля, торфа, млн. тонн

Суммарный техногенный выброс металлов

Содержится в гумосфере

Отношение техногенного выброса к содержанию в гумосфере

Отношение этих величин позволяет прогнозировать масштаб влияния деятельности человека на окружающую среду, прежде всего на почвенный покров.

Техногенное поступление металлов в почву, закрепление их в гумусовых горизонтах в почвенном профиле в целом не может быть равномерным. Неравномерность его и контрастность прежде всего связана с плотностью населения. Если считать эту связь пропорциональной, то 37,3% всех металлов будет рассеяно всего лишь в 2% обитаемой суши.

Распределение тяжелых металлов по поверхности почвы определяется многими факторами. Оно зависит от особенностей источников загрязнения, метеорологических особенностей региона, геохимических факторов и ландшафтной обстановке в целом.

Источник загрязнения в целом определяет качество и количество выбрасываемого продукта. При этом степень его рассеивания зависит от высоты выброса. Зона максимального загрязнения распространяется на расстояние, равное 10-40-кратной высоте трубы при высоком и горячем выбросе, 5-20-кратной высоте трубы при низком промышленном выбросе. Длительность нахождения частиц выброса в атмосфере зависит от их массы и физико-химических свойств. Чем тяжелее частицы, тем быстрее они оседают.

Неравномерность техногенного распространения металлов усугубляется неоднородностью геохимической обстановке а природных ландшафтах. В связи с этим, для прогнозирования возможного загрязнения продуктами техногенеза и предотвращения нежелательных последствий деятельности человека необходимо понимание законов геохимии, законов миграции химических элементов в различных природных ландшафтах или геохимической обстановке.

Химические элементы и их соединения попадая в почву претерпевают ряд превращений, рассеиваются или накапливаются в зависимости от характера геохимических барьеров, свойственных данной территории. Понятие о геохимических барьерах было сформулировано А. И. Перельманом (1961) как участках зоны гипергенеза, на которых изменение условий миграции приводит к накоплению химических элементов. В основу классификации барьеров положены виды миграции элементов. На этом основании А. И. Перельман выделяет четыре типа и несколько классов геохимических барьеров:

1. барьеры – для всех элементов, которые биогеохимические перераспределяются и сортируются живыми организмами (кислород, углерод, водород, кальций, калий, азот, кремний, марганец и т.д.);

2. физико-химические барьеры:

1) окислительные – железные или железно-марганцевые (железо, марганец), марганцевые (марганец), серный (сера);

2) восстановительные – сульфидный (железо, цинк, никель, медь, кобальт, свинец, мышьяк и др.), глеевый (ванадий, медь, серебро, селен);

3) сульфатный (барий, кальций, стронций);

4) щелочной (железо, кальций, магний, медь, стронций, никель и др.);

5) кислый (оксид кремния);

6) испарительный (кальций, натрий, магний, сера, фтор и т.д.);

7) адсорбционный (кальций, калий, магний, фосфор, сера, свинец и др.);

8) термодинамический (кальций, сера).

3. механические барьеры (железо, титан, хром, никель и др.);

4. техногенные барьеры.

Геохимические барьеры существуют не изолированно, а в сочетании друг с другом, образуя сложные комплексы. Они регулируют элементный состав потоков веществ, от них в большей мере зависит функционирование экосистем.

Продукты техногенеза в зависимости от их природы и той ландшафтной обстановки, в которую они попадают, могут либо перерабатываться природными процессами, и не вызывать существенных изменений в природе, либо сохраняться и накапливаться, губительно влияя на все живое.

И тот и другой процесс определяются рядом факторов, анализ которых позволяет судить об уровне биохимической устойчивости ландшафта и прогнозировать характер их изменений в природе под влиянием техногенеза. В автономных ландшафтах развиваются процессы самоочищения от техногенного загрязнения, так как продукты техногенеза рассеиваются поверхностными и внутрипочвенными водами. В аккумулятивных ландшафтах накапливаются и консервируются продукты техногенеза.

Промышленные стоки, кг/л

Почва, мг/кг

Растения, мг/кг

Вода питьевая, мг/л

Воздух, мг/м 3

ПДК в крови человека, мг/л

* У автострад в зависимости от интенсивности движения и расстояния до автострады

Всевозрастающее внимание к охране окружающей среды вызвал особый интерес к вопросам воздействия на почву тяжелых металлов.

С исторической точки зрения интерес к этой проблеме появился с исследованием плодородия почв, поскольку такие элементы, как железо, марганец, медь, цинк, молибден и, возможно, кобальт, очень важны для жизни растений и, следовательно, для животных и человека.

Они известны и под названием микроэлементов, потому, что необходимы растениям в малых количествах. К группе микроэлементов относятся также металлы, содержание которых в почве довольно высокое, например, железо, которое входит в состав большинства почв и занимает четвертое место в составе земной коры (5%) после кислорода (46,6%), кремния (27,7%) и алюминия (8,1%).

Все микроэлементы могут оказывать отрицательное влияние на растения, если концентрация их доступных форм превышает определенные пределы. Некоторые тяжелые металлы, например, ртуть, свинец и кадмий, которые, по всей видимости, не очень важны для растений и животных, опасны для здоровья человека даже при низких концентрациях.

Выхлопные газы транспортных средств, вывоз в поле или станции очистки сточных вод, орошение сточными водами, отходы, остатки и выбросы при эксплуатации шахт и промышленных площадок, внесение фосфорных и органических удобрений, применение пестицидов и т.д. привели к увеличению концентраций тяжелых металлов в почве.

До тех пор, пока тяжелые металлы прочно связаны с составными частями почвы и труднодоступны, их отрицательное влияние на почву и окружающую среду будет незначительным. Однако, если почвенные условия позволяют перейти тяжелым металлам в почвенный раствор, появляется прямая опасность загрязнения почв, возникает вероятность проникновения их в растения, а также в организм человека и животных, потребляющие эти растения. Кроме того, тяжелые металлы могут быть загрязнителями растений и водоемов в результате использования сточных ила вод. Опасность загрязнения почв и растений зависит: от вида растений; форм химических соединений в почве; присутствия элементов противодействующих влиянию тяжелых металлов и веществ, образующих с ними комплексные соединения; от процессов адсорбции и десорбции; количества доступных форм этих металлов в почве и почвенно-климатических условий. Следовательно, отрицательное влияние тяжелых металлов зависит, по существу, от их подвижности, т.е. растворимости.

Тяжелые металлы в основном характеризуются переменной валентностью, низкой растворимостью их гидроокисей, высокой способностью образовывать комплексные соединения и, естественно, катионной способностью.

К факторам, способствующим удержанию тяжелых металлов почвой относятся: обменная адсорбция поверхности глин и гумуса, формирование комплексных соединений с гумусом, адсорбция поверхностна и окклюзирование (растворяющие или поглощающие способности газов расплавленными или твердыми металлами) гидратированными окислами алюминия, железа, марганца и т.д., а также формирование нерастворимых соединений, особенно при восстановлении.

Тяжелые металлы в почвенном растворе встречаются как в ионной так и в связанной формах, которые находятся в определенном равновесии (рис. 1).

На рисунке Л р – растворимые лиганды, какими являются органические кислоты с малым молекулярным весом, а Л н – нерастворимые. Реакция металлов (М) с гумусовыми веществами включает частично и ионный обмен.

Конечно, в почве могут присутствовать и другие формы металлов, которые не участвуют непосредственно в этом равновесии, например, металлы из кристаллической решетки первичных и вторичных минералов, а также металлы из живых организмов и их отмерших остатков.

Наблюдение за изменением тяжелых металлов в почве невозможно без знания факторов, определяющих их подвижность. Процессы передвижения удержания, обуславливающие поведение тяжелых металлов в почве, мало чем отличаются от процессов, определяющих поведение других катионов. Хотя тяжелые металлы иногда обнаруживаются в почвах в низких концентрациях, они формируют устойчивые комплексы с органическими соединениями и вступают в специфические реакции адсорбции легче, чем щелочные и щелочноземельные металлы.

Миграция тяжелых металлов в почвах может происходить с жидкостью и суспензией при помощи корней растений или почвенных микроорганизмов. Миграции растворимых соединений происходит вместе с почвенным раствором (диффузия) или путем перемещения самой жидкости. Вымывание глин и органического вещества приводит к миграции всех связанных с ними металлов. Миграция летучих веществ в газообразной форме, например, диметила ртути, носит случайный характер, и этот способ перемещения не имеет особого значения. Миграция в твердой фазе и проникновение в кристаллическую решетку являются больше механизмом связывания, чем перемещения.

Тяжелые металлы могут быть внесены или адсорбированы микроорганизмами, которые в свою очередь, способны участвовать в миграции соответствующих металлов.

Дождевые черви и другие организмы могут содействовать миграции тяжелых металлов механическим или биологическим путями, перемешивая почву или включая металлы в свои ткани.

Из всех видов миграции самая важная – миграция в жидкой фазе, потому что большинство металлов попадает в почву в растворимом виде или в виде водной суспензии и фактически все взаимодействия между тяжелыми металлами и жидкими составными частями почвы происходит на границе жидкой и твердой фаз.

Тяжелые металлы в почве через трофическую цепь поступают в растения, а затем потребляются животными и человеком. В круговороте тяжелых металлов участвуют различные биологические барьеры, вследствие чего происходит выборочное бионакопление, защищающее живые организмы от избытка этих элементов. Все же деятельность биологических барьеров ограничена, и чаще всего тяжелые металлы концентрируются в почве. Устойчивость почв к загрязнению ими различна в зависимости от буферности.

Почвы с высокой адсорбционной способностью соответственно и высоким содержанием глин, а также органического вещества могут удерживать эти элементы, особенно в верхних горизонтах. Это характерно для карбонатных почв и почв с нейтральной реакцией. В этих почвах количество токсических соединений, которые могут быть вымыты в грунтовые воды и поглощены растениями, значительно меньше, чем в песчаных кислых почвах. Однако при этом существует большой риск в увеличении концентрации элементов до токсичной, что вызывает нарушение равновесия физических, химических и биологических процессов в почве. Тяжелые металлы, удерживаемые органической и коллоидной частями почвы, значительно ограничивают биологическую деятельность, ингибируют процессы иттрификации, которые имеют важное значение для плодородия почв.

Песчаные почвы, которые характеризуются низкой поглотительной способностью, как и кислые почвы очень слабо удерживают тяжелые металлы, за исключением молибдена и селена. Поэтому они легко адсорбируются растениями, причем некоторые из них даже в очень малых концентрациях обладают токсичным воздействием.

Содержание цинка в почве колеблется от 10 до 800 мг/кг, хотя чаще всего оно составляет 30-50 мг/кг. Накопление избыточного количества цинка отрицательно влияет на большинство почвенных процессов: вызывает изменение физических и физико-химических свойств почвы, снижает биологическую деятельность. Цинк подавляет жизнедеятельность микроорганизмов, вследствие чего нарушаются процессы образования органического вещества в почвах. Избыток цинка в почвенном покрове затрудняет ферментацию разложения целлюлозы, дыхания, действия уреазы.

Тяжелые металлы, поступая из почвы в растения, передаваясь по цепям питания, оказывают токсическое действие на растения, животных и человека.

Среди наиболее токсичных элементов прежде всего следует назвать ртуть, которая представляет наибольшую опасность в форме сильнотоксичного соединения – метилртути. Ртуть попадает в атмосферу при сжигании каменного угля и при испарении вод из загрязненных водоемов. С воздушными массами она может переноситься и откладываться на почвах в отдельных районах. Исследования показали, что ртуть хорошо сорбируется в верхних сантиметрах перегнойно-аккумулятивного горизонта разных типов почв суглинистого механического состава. Миграция ее по профилю и вымывание за пределы почвенного профиля в таких почвах незначительна. Однако в почвах легкого механического состава, кислых и обедненных гумусом процессы миграции ртути усиливаются. В таких почвах проявляется также процесс испарения органических соединений ртути, которые обладают свойствами летучести.

При внесении ртути на песчаную, глинистую и торфяную почвы из расчета 200 и 100 кг/га урожай на песчаной почве полностью погиб не зависимо от уровня известкования. На торфяной почве урожай понизился. На глинистой почве произошло снижение урожая только при низкой дозе извести.

Свинец также обладает способностью передаваться по цепям питания, накапливаясь в тканях растений, животных и человека. Доза свинца, равная 100 мг/кг сухого веса корма, считается летальной для животных.

Свинцовая пыль оседает на поверхности почв, адсорбируется органическими веществами, передвигается по профилю с почвенными растворами, но выносится за пределы почвенного профиля в небольших количествах.

Благодаря процессам миграции в условиях кислой среды образуются техногенные аномалии свинца в почвах протяженностью 100 м. Свинец из почв поступает в растения и накапливается в них. В зерне пшеницы и ячменя количество его в 5-8 раз превышает фоновое содержание, в ботве, картофеле – более чем в 20 раз, в клубнях – более чем в 26 раз.

Кадмий, подобно ванадию и цинку, аккумулируется гумусовой толще почв. Характер его распределения в почвенном профиле и ландшафте, видимо, имеет много общего с другими металлами, в частности с характером распределения свинца.

Однако, кадмий закрепляется в почвенном профиле менее прочно, чем свинец. Максимальная адсорбция кадмия свойственна нейтральным и щелочным почвам с высоким содержанием гумуса и высокой емкостью поглощения. Содержание его в подзолистых почвах может составлять от сотых долей до 1 мг/кг, в черноземах – до 15-30, а в красноземах – до 60 мг/кг.

Многие почвенные беспозвоночные концентрируют кадмий в своих организмах. Кадмий усваивается дождевыми червями, мокрицами и улитками в 10-15 раз активнее, чем свинец и цинк. Кадмий токсичен для сельскохозяйственных растений, и даже, если высокие концентрации кадмия не оказывают заметного влияния на урожай сельскохозяйственных культур, токсичность его сказывается на изменении качества продукции, так как в растениях происходит повышения содержания кадмия.

Мышьяк попадает в почву с продуктами сгорания угля, с отходами металлургической промышленности, с предприятий по производству удобрений. Наиболее прочно мышьяк удерживается в почах, содержащих активные формы железа, алюминия, кальция. Токсичность мышьяка в почвах всем известна. Загрязнение почв мышьяком вызывает, например, гибель дождевых червей. Фоновое содержание мышьяка в почвах составляет сотые доли миллиграмма на килограмм почвы.

Фтор и его соединения находят широкое применение в атомной, нефтяной, химической и др. видах промышленности. Он попадает в почву с выбросами металлургических предприятий, в частности, алюминиевых заводов, а также как примесь при внесении суперфосфата и некоторых других инсектицидов.

Загрязняя почву, фтор вызывает снижение урожая не только благодаря прямому токсическому действию, но и изменяя соотношение питательных веществ в почве. Наибольшая адсорбция фтора происходит в почвах с хорошо развитым почвенным поглощающим комплексом. Растворимые фтористые соединения перемещаются по почвенному профилю с нисходящим током почвенных растворов и могут попадать в грунтовые воды. Загрязнение почвы фтористыми соединениями разрушает почвенную структуру и снижает водопроницаемость почв.

Цинк и медь менее токсичны, чем названные тяжелые металлы, но избыточное их количество в отходах металлургической промышленности загрязняет почву и угнетающе действует на рост микроорганизмов, понижает ферментативную активность почв, снижает урожай растений.

Следует отметить усиление токсичности тяжелых металлов при их совместном воздействии на живые организмы в почве. Совместное воздействие цинка и кадмия оказывает в несколько раз более сильное ингибирующее действие на микроорганизмы, чем при такой же концентрации каждого элемента в отдельности.

Поскольку тяжелые металлы и в продуктах сгорания топлива, и в выбросах металлургической промышленности встречаются обычно в различных сочетаниях, то действие их на природу, окружающую источники загрязнения, бывает более сильным, чем предполагаемое на основании концентрации отдельных элементов.

Вблизи предприятий естественные фитоценозы предприятий становятся более однообразными по видовому составу, так как многие виды не выдерживают повышения концентрации тяжелых металлов в почве. Количество видов может сокращаться до 2-3, а иногда до образования моноценозов.

В лесных фитоценозах первыми реагируют на загрязнения лишайники и мхи. Наиболее устойчив древесный ярус. Однако длительное или высокоинтенсивное воздействие вызывает в нем сухостойкие явления.



Похожие статьи