Чем ферменты отличаются от катализаторов. Большая энциклопедия нефти и газа

Вопрос 18. Сходство и отличие ферментов и неорганических катализаторов. Зависимость скорости ферментативных реакций от температуры, рН. Виды специфичности.

Строение простых и сложных ферментов (на примере гидролаз, дегидрогеназ).

По составу ферменты делятся на простые и сложные.

Простые ферменты состоят из аминокислот. К ним относятся ферменты желудочно-кишечного тракта – α-амилаза, пепсин, трипсин, липаза и др. Все эти ферменты относятся к 3 классу – гидролаз.

Сложные ферменты состоят из белковой части – апофермента и небелковой – кофактора. Каталитически активный комплекс «фермент – кофактор» называется холоферментом. В качестве кофакторов могут выступать как ионы металлов, так и органические соединения, многие из которых являются производными витаминов.

Например, оксидоредуктазы используют в качестве кофакторов Fe²+, Сu²+, Mn²+, киназы Mg²+; для глутатионпероксидазы – фермента, обезвреживающего перекись водорода, требуется селен.

Коферменты – это органические вещества, которые непрочно связаны с белковой частью. Например, НАД-зависимые дегидрогеназы состоят из белка и коферментов НАД, НАДФ, производных витамина РР.

Простетическая группа – это коферменты, которые прочно (часто ковалентно) связаны с апоферментом. Например, флавиновые дегидрогеназы состоят из белка и простетических групп ФАД, ФМН, производных витамина В 2 . Апофермент определяет направленность или специфичность действия фермента.

. Общие свойства ферментов: специфичность, влияние температуры, pH среды на активность ферментов.

На активность ферментов оказывают влияние температура, рН среды, ионная сила растворов.

Так как ферменты по химической природе являются белками, повышение температуры свыше 45-50˚С приводит к тепловой денатурации и ферменты инактивируются (исключение – миокиназа мышц, папаин).

Низкие температуры не разрушают ферменты, а только приостанавливают их действие. Оптимальная температура для проявления активности фермента равна 37-40˚С.

На активность ферментов оказывает влияние реакция среды. Значение рН среды, при котором фермент проявляет максимальную активность, называют оптимумом рН среды для действия данного фермента. РН-оптимум действия ферментов лежит в пределах физиологических значений 6,0-8,0. Исключения: пепсин, рН-оптимум которого равен 2,0; аргиназа – рН-оптимум равен 10,0.

Ферменты обладают специфичностью. Различают несколько видов специфичности:

1. Абсолютная специфичность – фермент взаимодействует только с одним субстратом. Например, уреаза ускоряет гидролиз мочевины, но не расщепляет тиомочевину.

2. Стереоспецифичность – фермент взаимодействует с определенным оптическим и геометрическим изомером.

3. Абсолютная групповая специфичность – ферменты специфичны в отношении характера связи, а также тех соединений, которые образуют эту связь. Например, α-амилаза расщепляет α-гликозидную связь в молекуле мальтозы, состоящей из двух молекул глюкозы, но не расщепляет молекулу сахарозы, состоящую из молекулы глюкозы и молекулы фруктозы.

4. Относительная групповая специфичность. В этом случае ферменты специфичны только в отношении связи, но безразличны к тем соединениям, которые образуют эту связь. Например, протеазы ускоряют гидролиз пептидных связей в различных белках, липазы ускоряют расщепление сложноэфирных связей в жирах.

Вопрос 19 Активаторы и ингибиторы ферментов. Механизм их действия. Обратимое и необратимое, конкурентное и неконкурентное ингибирование. Использование принципа конкурентного ингибирования в медицине.

.Активаторы и ингибиторы ферментов, механизмы их влияния и значение.

На скорость химических реакций оказывают влияние различные вещества. По характеру влияния вещества подразделяются на активаторы, увеличивающие активность ферментов, и ингибиторы (парализаторы), подавляющие активность ферментов.

Активирование ферментов могут вызывать:

1. Присутствие кофакторов – ионы металлов Fe²+, Mg²+, Mn²+, Cu²+, Zn²+, АТФ, липоевая кислота.

2. Частичный их протеолиз.

Ферменты желудочно-кишечного тракта вырабатываются в виде неактивных форм – зимогенов. Под влиянием различных факторов происходит отщепление пептида с формированием активного центра и зимоген превращается в активную форму фермента.

Пепсиноген НСl пепсин + пептид


Трипсиноген энтерокиназа трипсин + пептид

Этот вид активирования предохраняет клетки желудочно-кишечного тракта от самопереваривания.

3. Фосфорилирование и дефосфорилирование. Например:

неакт. липаза + АТФ → липаза-фосфат (акт. липаза);

липаза-фосфат+Н3РО4 → липаза (неакт. липаза)

Ингибиторы по характеру своего действия подразделяются на обратимые и необратимые. В основе такого деления лежит прочность соединения ингибитора с ферментом.

Обратимые ингибиторы – это соединения, которые нековалентно взаимодействуют с ферментом и могут отщепляться от фермента.

Необратимые ингибиторы – это соединения, которые образуют ковалентные, прочные связи с ферментом.

Необратимое ингибирование может быть специфическим и неспецифическим.

При специфическом ингибировании ингибиторы тормозят действие определенных ферментов, связывая отдельные функциональные группы активного центра. Например, тиоловые яды ингибируют ферменты, в активный центр которых входят SН-группы; угарный газ (СО) ингибирует ферменты, имеющие в активном центре Fe²+.

Неспецифические ингибиторы тормозят действие всех ферментов. К ним относятся все денатурирующие факторы (высокая температура, органические и минеральные кислоты, соли тяжелых металлов и др.).

Обратимое ингибирование может быть конкурентным. При этом ингибитор является структурным аналогом субстрата и конкурирует с ним за связывание в субстратсвязывающем участке активного центра.

Отличительная особенность конкурентного ингибирования состоит в том, что его можно ослабить или полностью устранить, повысив концентрацию субстрата.

Сукцинатдегидрогеназа (СДГ) – фермент цитратного цикла, дегидрирует сукцинат, превращая его в фумарат. Малонат, который структурно похож на сукцинат, связывается в активном центре СДГ, но не может дегидрироваться. Поэтому малонат – конкурентный ингибитор СДГ.

Многие лекарственные препараты являются конкурентными ингибиторами ферментов. Например, сульфаниламидные препараты, являясь структурными аналогами парааминобензойной кислоты (ПАБК) – основного фактора роста болезнетворных микроорганизмов, конкурируют с ней за связывание в субстратсвязывающем участке активного центра фермента. На этом основано противомикробное действие сульфаниламидных препаратов.

Отличия:

1. Скорость ферментативных реакций выше, чем реакций, катализируемых неорганическими катализаторами.

2. Ферменты обладают высокой специфичностью к субстрату.

3. Ферменты по своей химической природе белки, катализаторы - неорганика.

4. Ферменты подвержены регуляции (есть активаторы и ингибиторы ферментов), неорганические катализаторы работают нерегулируемо.

5. Ферменты обладают конформационной лабильностью - способностью к небольшим изменениям своей структуры за счет разрыва и образования новых слабых связей.

6. Ферментативные реакции протекают только в физиологических условиях, т. к. работают внутри клеток, тканей и организма (это определенные значения температуры, давления и рН).

Общие свойства ферментов:

1. Не расходуются в процессе катализа ;

2. Имеют высокую активность по сравнению с катализаторами др. природы;

3. Обладают высокой специфичностью;

4. Лабильность (неустойчивость);

5. Ускоряют только те реакции, которые не противоречат законам термодинамики .

Общие свойства неорганических катализаторов:

1. Химическая природа - низкомолекулярные вещества;

2. В ходе реакции структура катализатора изменяется незначительно, или не изменяется вовсе;

3. Оптимум pH - сильнокислая или щелочная;

4. Увеличение скорости реакции намного меньше, чем при действии ферментов.

Специфичность - очень высокая избирательность ферментов по отношению к субстрату. Специфичность фермента объясняется совпадением пространственной конфигурации субстрата и субстратного центра. За специфичность фермента ответственен как активный центр фермента, так и вся его белковая молекула. Активный центр фермента определяет тип реакции, который может осуществить данный фермент. Различают три вида специфичности: абсолютную, относительную, стереохимическую.

Абсолютная специфичность. Такой специфичностью обладают ферменты, которые действуют только на один субстрат. Например, сахараза гидролизует только сахарозу , лактаза - лактозу, мальтаза - мальтозу, уреаза - мочевину, аргиназа - аргинин и т.д.

Относительная специфичность - это способность фермента действовать на группу субстратов с общим типом связи, т.е. относительная специфичность проявляется только по отношению к определенному типу связи в группе субстратов. Пример: липаза расщепляют сложноэфирную связь в жирах животного и растительного происхождения. Амилаза гидролизует α-гликозидную связь в крахмале, декстринах и гликогене. Алкогольдегидрогеназа окисляет спирты (метанол , этанол и др.).

Стереохимическая специфичность - это способность фермента действовать только на один стереоизомер. Например: 1) L, B-изомерия: L- амилаза слюны и сока поджелудочной железы расщепляет только L-глюкозидные связи в крахмале и не расщепляет D-глюкозидные связи клетчатки; 2) L и В-изомерия: В нашем организме превращения подвергаются только L-аминокислоты, т.к. эти превращения осуществляются ферментами L-оксидазами, способными реагировать только с L-формой аминокислот; 3) Цис-, транс-изомерия: Фумаратгидратаза может превращать только транс-изомер (фумаровую кислоту) в яблочную. Цис-изомер (малеиновая кислота) таким превращениям в нашем организме не подвергается.


Локализация ферментов зависит от их функций. Одни ферменты просто растворены в цитоплазме, другие связаны с определенными органоидами. Например, окислительно-восстановительные ферменты сосредоточены в митохондриях.

Эктоферменты - ферменты, локализующиеся в плазматической мембране и действующие снаружи от нее

Эндоферменты - функционируют внутри клетки. Они катализируют реакции биосинтеза и энергетического обмена.

Экзоферменты - выделяются клеткой в окружающую среду, за пределами клетки расщепляют крупные молекулы на более мелкие осколки и тем самым способствуют проникновению их в клетку. К ним относятся гидролитические ферменты, играющие исключительно важную роль в питании микроорганизмов.

Ферменты и их значение в процессах жизнедеятельности

Из курса химии вам известно, что такое катализатор. Это вещество, которое ускоряет реакцию, оставаясь в конце реакции неизменным (не расходуясь). Биологические катализаторы называются ферментами (от лат. fermentum – брожение, закваска), или энзимами .

Почти все ферменты – это белки (но не все белки – ферменты!). В последние годы стало известно, что и некоторые молекулы РНК имеют свойства ферментов.

Впервые высокоочищенный кристаллический фермент был выделен в 1926 г. американским биохимиком Дж.Самнером. Этим ферментом была уреаза , которая катализирует расщепление мочевины. К настоящему времени известно более 2 тыс. ферментов, и их количество продолжает расти. Многие из них выделены из живых клеток и получены в чистом виде.

В клетке постоянно идут тысячи реакций. Если смешать в пробирке органические и неорганические вещества точно в тех же соотношениях, что и в живой клетке, но без ферментов, то почти никаких реакций с заметной скоростью идти не будет. Именно благодаря ферментам реализуется генетическая информация и осуществляется весь обмен веществ.

Для названия большинства ферментов характерен суффикс -аза, который чаще всего прибавляется к названию субстрата – вещества, с которым взаимодействует фермент.

Строение ферментов

По сравнению с молекулярной массой субстрата ферменты имеют гораздо большую массу. Такое несоответствие наводит на мысль, что не вся молекула фермента участвует в катализе. Чтобы разобраться в этом вопросе, необходимо познакомиться со строением ферментов.

По строению ферменты могут быть простыми и сложными белками. Во втором случае в составе фермента кроме белковой части (апофермент ) имеется добавочная группа небелковой природы – активатор (кофактор , или кофермент ), вследствие чего образуется активный голофермент . Активаторами ферментов выступают:

1) неорганические ионы (например, для активации фермента амилазы, находящегося в слюне, необходимы ионы хлора (Сl–);

2) простетические группы (ФАД, биотин), прочно связанные с субстратом;

3) коферменты (НАД, НАДФ, кофермент А), непрочно связанные с субстратом.

Белковая часть и небелковый компонент в отдельности лишены ферментативной активности, но, соединившись вместе, приобретают характерные свойства фермента.

В белковой части ферментов содержатся уникальные по своей структуре активные центры, представляющие собой сочетание определенных аминокислотных остатков, строго ориентированных по отношению друг к другу (в настоящее время структура активных центров ряда ферментов расшифрована). Активный центр взаимодействует с молекулой субстрата с образованием «фермент-субстратного комплекса». Затем «фермент-субстратный комплекс» распадается на фермент и продукт или продукты реакции.

Согласно гипотезе, выдвинутой в 1890 г. Э.Фишером, субстрат подходит к ферменту, как ключ к замку , т.е. пространственные конфигурации активного центра фермента и субстрата точно соответствуют (комплементарны ) друг другу. Субстрат сравнивается с «ключом», который подходит к «замку» – ферменту. Так, активный центр лизоцима (фермента слюны) имеет вид щели и по форме точно соответствует фрагменту молекулы сложного углевода бактериальной палочки, которая расщепляется под действием этого фермента.

В 1959 г. Д. Кошланд выдвинул гипотезу, по которой пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу назвали гипотезой «руки и перчатки» (гипотеза индуцированного взаимодействия). Этот процесс «динамического узнавания» – на сегодня наиболее распространенная гипотеза.

Отличия ферментов от небиологических катализаторов

Ферменты во многом отличаются от небиологических катализаторов.

1. Ферменты значительно эффективнее (в 10 4 –10 9 раз). Так, единственная молекула фермента каталазы может расщепить за одну секунду 10 тыс. молекул токсичной для клетки перекиси водорода:

2Н 2 О 2 ––> 2H 2 O + O 2 ­,

которая возникает при окислении в организме различных соединений. Или еще один пример, подтверждающий высокую эффективность действия ферментов: при комнатной температуре одна молекула уреазы способна за за одну секунду расщепить до 30 тыс. молекул мочевины:

H 2 N–CO–NH 2 + Н 2 О ––> СО 2 ­ + 2NН 3 ­.

Не будь катализатора, на это потребовалось бы около 3 млн лет.

2. Высокая специфичность действия ферментов. Большинство ферментов действуют лишь на один или очень небольшое число «своих» природных соединений (субстратов). Специфичность ферментов отражает формула «один фермент – один субстрат» . Благодаря этому в живых организмах множество реакций катализируется независимо.

3. Ферменты доступны тонкой и точной регуляции. Активность фермента может увеличиваться или уменьшаться при незначительном изменении условий, в которых он «работает».

4. Небиологические катализаторы в большинстве случаев хорошо работают лишь при высокой температуре. Ферменты же, присутствуя в клетках в малых количествах, работают при обычной температуре и давлении (хотя рамки действия ферментов ограничены, так как высокая температура вызывает денатурацию). Поскольку большинство ферментов являются белками, их активность наиболее высока при физиологически нормальных условиях: t=35–45 °C; слабощелочная среда (хотя для каждого фермента существует свое оптимальное значение рН).

5. Ферменты образуют комплексы – так называемые биологические конвейеры. Процесс расщепления или синтеза любого вещества в клетке, как правило, разделен на ряд химических операций. Каждую операцию выполняет отдельный фермент. Группа таких ферментов составляет своего рода биохимический конвейер.

6. Ферменты способны регулироваться, т.е. «включаться» и «выключаться» (правда, это относится не ко всем ферментам, например, не регулируется амилаза слюны и ряд других пищеварительных ферментов). В большинстве молекул апоферментов есть участки, которые узнают еще и конечный продукт, «сходящий» с полиферментного конвейера. Если такого продукта слишком много, то активность самого начального фермента тормозится им, и наоборот, если продукта мало, то фермент активизируется. Так регулируется множество биохимических процессов.

Таким образом, ферменты обладают целым рядом преимуществ по сравнению с небиологическими катализаторами.

| следующая лекция ==>
Аналіз останніх досліджень і публікацій. Проблеми фінансування регіонів Європейського Союзу і України розглядали такі науковці як: Возняк Г.В., Григор’єва О.Н., Бєліченко А.Ф. |

Основу всех жизненных процессов составляют тысячи химических реакций, катализируемых ферментами. Значение ферментов точно и образно определил И.П.Павлов, назвав их "возбудителями жизни" . Нарушения в работе ферментов ведут к возникновению тяжелых заболеваний – фенилкетонурия , гликогенозы , галактоземия , тирозинемия или существенному снижению качества жизни – дислипопротеинемии , гемофилия.

Известно, что для осуществления химической реакции необходимо, чтобы реагирующие вещества имели суммарную энергию выше, чем величина, называемая энергетическим барьером реакции. Для характеристики величины энергетического барьера Аррениус ввел понятие энергии активации . Преодоление энергии активации в химической реакции достигается либо увеличением энергии взаимодействующих молекул, например нагреванием, облучением, повышением давления, либо снижением требуемых для реакции затрат энергии (т.е. энергии активации) при помощи катализаторов.

Величина энергии активации с ферментом и без него

По своей функции ферменты являются биологическими катализаторами. Сущность действия ферментов, так же как неорганических катализаторов, заключается:

  • в активации молекул реагирующих веществ,
  • в разбиении реакции на несколько стадий, энергетический барьер каждой из которых ниже такового общей реакции.

Однако энергетически невозможные реакции ферменты катализировать не будут, они ускоряют только те реакции, которые могут идти в данных условиях.

Сходство и отличия ферментов и неорганических катализаторов

Ускорение реакций при помощи ферментов весьма значительно, например:

А. Уреаза ускоряет реакцию разложения вполне устойчивой мочевины до аммиака и воды в 10 13 раз, поэтому при инфекции мочевых путей (появление бактериальной уреазы) моча приобретает аммиачный запах.

Б. Рассмотрим реакцию разложения пероксида водорода:

2Н 2 О 2 → О 2 + 2Н 2 О

Если скорость реакции без катализатора принять за единицу, то в присутствии платиновой черни скорость реакции увеличивается в 2×10 4 раза и энергия активации снижается с 18 до 12 ккал/моль, в присутствии фермента каталазы скорость реакции возрастает в 2×10 11 раза с энергией активации 2 ккал/моль.

Афанасьев Илья

Катализаторы и ферменты - вещества ускоряющие химические процессы, но сами при этом не расходуются.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Сравнение неорганических катализаторов и биологических ферментов Презентацию подготовил Ученик 10В класса МАОУ «Лицей №131» Афанасьев Илья Учитель: Сафонова Эльфия Рустямовна

С чего начать? Академик Георгий Константинович Боресков,советский химик и инженер, однажды в полушуточном стиле описал, что было бы, если бы на Земле вдруг исчезли все катализаторы, суть описания сводилась к тому, что наша планета скоро стала бы безжизненной пустыней, омываемой океаном слабой азотной кислоты .

Но о каких именно катализаторах говорил Академик Боресков? Ведь наравне с неорганическими катализаторами, в химии используются и биологические ферменты, без которых существование нашего организма было бы невозможным. Давайте узнаем, что из себя представляют ферменты и неорганические катализаторы, и в чем их отличия Палладий-один из часто используемых катализаторов Биологические Ферменты

Ферменты Ферменты - биологические катализаторы белковой природы. Термин фермент (от лат. fermentum - закваска) был предложен в начале XVII в. голландским ученым Ван Гельмонтом для веществ, влияющих на спиртовое брожение.

История открытия ферментов Человек, на протяжении жизни, замечал, что что-то какие-то вещества оказывают влияние на производство хлеба, создания вина и молочных изделий. Но только в 1833 году из прорастающих зерен ячменя было выделено вещество, осуществляющее превращение крахмала в сахар и впоследстивии именуем амилазой. Но только в конце 19 века было доказано,что при растирании дрожжевых клеток образуется сок, который обеспечивает процесс спиртового брожения. Амила́за (др.-греч. άμυλον - крахмал

Функции ферментов Ферменты участвуют в осуществлении всех процессов обмена веществ и в реализации генетической информации возможность. Возможность быстрого переваривания продуктов в живом организме осуществляется благодаря им Ферменты выделяют из легких углекислый газ Повышают уровень выносливости организма Поддерживают работу иммунной системы для борьбы с инфекциями Именно ферменты осуществляют поиск раковых клеток в организме, впоследствии уничтожая их.

Химические свойства ферментов По химическим свойствам ферменты являются амфотерными электролитами. Они обладают высокой молекулярной массой(48000 Д= 7.970544000006 x 1 0 ^ 23 кг) Они очень видоспецифичны (для каждого органа может быть свой фермент Из этого пункта следует, что для каждого органа требуется своя температура, кислотность, давление и т.д

Примеры реакций с участием ферментов Реакции брожения глюкозы с использованием различных ферментов, в результате которой одна молекула глюкозы преобразуется в 2 молекулы этанола и в 2 молекулы углекислого газа.

Н.Клеман, Ш.Дезорм (1806 г.) Оксиды азота – агенты, способные окисляться кислородом воздуха и передавать кислород сернистому газу Неогранические катализаторы

К.Кирхгоф (1811 г.) Работы Клемана, Дезорма и Кирхгофа инициировали поиск таких уникальных веществ. За 20 лет было найдено множество реакций:

Механизм Катализатора

Универсальные катализаторы Никель Ренея Никель Ренея, иначе «скелетный никель» - твёрдый микрокристаллический пористый никелевый катализатор.Представляет собой серый высокодисперсный порошок (размер частиц обычно 400-800 нм), содержащий, помимо никеля, некоторое количество алюминия (до 15 масс.%) и насыщенный водородом (до 33 ат.%). Никель Ренея широко применяется как катализатор разнообразных процессов гидрирования или восстановления водородом органических соединений (например, гидрирования аренов, алкенов, растительных масел и т. п.). Ускоряет также и некоторые процессы окисления кислородом воздуха. Получают никель Ренея сплавлением при 1200 °C никеля с алюминием (20-50 % Ni ; иногда в сплав добавляются незначительные количества цинка или хрома), после чего размолотый сплав для удаления алюминия обрабатывают горячим раствором гидроксида натрия с концентрацией 10 - 35 %; остаток промывают водой в атмосфере водорода. Лежащий в основе приготовления никеля Ренея принцип используется и для получения каталитически активных форм других металлов - кобальта, меди, железа и т. д.

Универсальные Катализаторы Палладий Палладий - переходный металл серебристо-белого цвета с гранецентрированной кубической решёткой типа Cu Палладий часто применяется как катализатор, в основном, в процессе гидрогенизации жиров и крекинге нефти. Хлорид палладия используется как катализатор и для обнаружения микроколичеств угарного газа в воздухе или газовых смесях

Универсальные катализаторы Платина Платина, особенно в мелкодисперсном состоянии, является очень активным катализатором многих химических реакций, в том числе используемых в промышленных масштабах. Например, платина катализирует реакцию присоединения водорода к ароматическим соединениям даже при комнатной температуре и атмосферном давлении водорода. Ещё в 1821 немецкий химик И. В. Дёберейнер обнаружил, что платиновая чернь способствует протеканию ряда химических реакций; при этом сама платина не претерпевала изменений. Так, платиновая чернь окисляла пары винного спирта до уксусной кислоты уже при обычной температуре. Через два года Дёберейнер открыл способность губчатой платины при комнатной температуре воспламенять водород. Если смесь водорода и кислорода (гремучий газ) ввести в соприкосновение с платиновой чернью или с губчатой платиной, то сначала идет сравнительно спокойная реакция горения. Но так как эта реакция сопровождается выделением большого количества теплоты, платиновая губка раскаляется, и гремучий газ взрывается. На основании своего открытия Дёберейнер сконструировал «водородное огниво» - прибор, широко применявшийся для получения огня до изобретения спичек.

Сравнение Неорганических Катализаторов и Биологических ферментов Общее между ферментами и неорганическими катализаторами: 1. Увеличивают скорость химических реакций, при этом сами не расходуются. 2. Ферменты и неорганические катализаторы ускоряют энергетически возможные реакции. 3. Энергия химической системы остается постоянной. 4. В ходе катализа направление реакции не изменяется.

Ферменты обладают конформационной лабильностью - способностью к небольшим изменениям своей структуры за счет разрыва и образования новых слабых связей, не обладают неорганические катализаторы

Сравнение Неорганических Катализаторов и Биологических ферментов Признаки Сравнения Неорганические катализаторы Ферменты Химическая природа Низкомолекулярные вещества, образованные одним или несколькими элементами Белки-высокомолекулярные полимеры Видоспецифичность Универсальные катализаторы На каждую реакцию нужен свой фермент Кислотная среда Сильнокислая или щелочная У каждого органа своя кислотная среда Интервалы t Очень широкие 35-42 градуса Цельсия,затем денатурируют Увеличение скорости реакций От 10 ^2 до 10^6 раз От 10^8 до 10^12 раз Стабильность Могут быть побочные эффекты(70%) Почти 100% выход продуктов.

П ерекись водорода без присутствия катализаторов разлагается довольно медленно. При наличии неорганического катализатора (обычно солей железа) реакция несколько убыстряется. А при добавлении фермента каталазы пероксид разлагается с невообразимой скоростью. MnO2+H2O2=>O2+H2O+MnO

В отличие от катализаторов неорганической природы ферменты "работают" в "мягких" условиях: при атмосферном давлении, при температуре 30 - 40°С, при значении рН-среды близком к нейтральному. Скорость ферментативного катализа намного выше, чем небиологического. Единственная молекула фермента может катализировать от тысячи до миллиона молекул субстрата за 1 минуту. Такая скорость недостижима для катализаторов неорганической природы.

Итог Несмотря на то, что и ферменты, и неорганические катализаторы используются для одной цели-ускорять вещества, они обладают довольно разными свойствами. Но не стоит забывать, что без них люди не смогли достичь успехов не только в химии, но и в других науках. Не нужно искать золотую середину в поиске идеального, нужно использовать их для своего случае, где смогут себя проявить по максимуму.



Похожие статьи