Оборудование для определения чистоты воздуха в операционной. Стандарты на чистоту воздуха в лечебных учреждениях

Архитектурно-планировочные решения стационара должны исключать перенос инфекций из палатных отделений и других помещений в операционный блок и другие помещения, требующие особой чистоты воздуха.

Для исключения возможности поступления воздушных масс из палатных отделений, лестнично-лифтового узла и других помещений в операционный блок необходимо устройство между указанными помещениями и операционным блоком шлюза с подпором воздуха.

Движение воздушных потоков должно быть обеспечено из операционных в прилегающие к ним помещения (предоперационные, наркозные и др.), а из этих помещений в коридор. В коридорах необходимо устройство вытяжной вентиляции.

Количество удаленного воздуха из нижней зоны операционных должно составлять 60%, из верхней зоны - 40%. Подача свежего воздуха осуществляется через верхнюю зону. При этом приток должен не менее чем на 20% преобладать над вытяжкой.

Необходимо предусматривать обособление (изолированные) системы вентиляции для чистых и гнойных операционных, для родблоков, реанимационных отделений, перевязочных отделений, палатных секций, рентгеновских и других спецкабинетов.

В каждом учреждении приказом должно быть назначено лицо, ответственное за эксплуатацию систем вентиляции и кондиционирования воздуха воздуховодов должен проводится согласно утвержденному графику, но не реже 2 раз в год. Устранение текущих неисправностей, дефектов должно проводится безотлагательно. Не реже 1 раза в месяц следует производить осмотр фильтров, их очистку, замену.

Эксплуатирующей организацией должен осуществляться контроль за температурой, влажностью и загрязненностью химическими веществами воздушной среды, проверка производительности вентиляционной системы и кратности воздухообмена. В основных функциональных помещениях, операционных, послеоперационных, родовых, палатах интенсивной терапии, ФТО, помещениях для хранения сильнодействующих и ядовитых веществ, аптечных складах, помещениях для приготовления лекарственных средств, лабораториях, отделении терапевтической стоматологии, приготовления амальгамы, специальных помещениях радиологических отделений и других помещениях и кабинетах, с использованием химических и других веществ и соединений, могущих оказывать вредное воздействие на здоровье людей - 1 раз в 3 месяца; инфекционных и других больницах (отделениях), бактериологических, вирусных лабораториях, рентгенкабинетах - 1 раз в 6 месяцев; в остальных помещениях - 1 раз в 12 месяцев. Результаты контроля должны быть оформлены актом, хранящимся в учреждении.

4.3. Санитарная оценка вентиляционного режима.

Санитарная оценка эффективности вентиляции производится на основании:

    санитарного обследования вентиляционной системы оценка и режима ее эксплуатации;

    расчета фактического объема вентиляции и кратности воздухообмена по данным инструментальных замеров;

    объективного исследования воздушной среды и микроклимата вентилируемых помещений.

Оценив режим естественной вентиляции (инфильтрация наружного воздуха через различные щели и неплотности в окнах, дверях и отчасти через поры строительных материалов в помещения), а также проветривание их с помощью открытых окон, форточек и других отверстий, устраиваемых для усиления естественного воздухообмена, рассматривают устройство аэрационных приспособлений (фрамуги, форточки, аэрационные каналы) и режим проветривания. При наличии искусственной вентиляции (механическая вентиляция, которая не зависит от наружной температуры и давления ветра и обеспечивает при известных условиях подогрев, охлаждение и очистку наружного воздуха) уточняют время ее функционирования в течение суток, условия содержания воздухозаборных и воздухоочистительных камер. Далее необходимо определить эффективность вентиляции, находя ее из фактического объема и кратности воздухообмена. Следует различать необходимые и фактические величины объема и кратности воздухообмена.

Необходимый объем вентиляции - это количество свежего воздуха, которое следует подать в помещение на 1 человека в час, чтобы содержание СО 2 не превысило допустимого уровня (0,07% или 0,1%).

Под необходимой кратностью вентиляции понимают число, показывающее сколько раз в течение 1 часа воздух помещения должен смениться наружным, чтобы содержание СО 2 не превысило допустимого уровня.

Таблица 11.

Кратность обмена воздуха в больничных помещениях (СНиП-П-69-78)

Помещения

Кратность воздухообмена в ч.

Палаты для взрослых

80 м 3 на одну койку

80 м 3 на одну койку

Палаты предродовые, перевязочные, манипуляционные, предоперационные, процедурные

Родовые, операционные, послеоперационные палаты, палаты интенсивной терапии

По расчету, но не менее десятикратного обмена

Палаты послеродовые

80 м 3 на одну койку

Палаты для детей

80 метров 3 на одну койку

Палаты для недоношенных, грудных и новорожденных детей

По расчету, но не менее 80 м 3 на кровать

Для определения кратности воздухообмена в помещении при естественной вентиляции необходимо учитывать кубатуру помещения, число находящихся в нем людей и характер проводимой в нем работы. С использованием перечисленных выше данных кратность естественного воздухообмена можно рассчитать по следующим трем методам:

1. В жилых и общественных домах, где изменения качества воздуха происходит в зависимости от количества присутствующих людей и бытовых процессов, связанных с ними, расчет необходимого воздухообмена производят обычно по углекислоте, выделяемой одним человеком. Расчет объема вентиляции по углекислоте производят по формуле:

L = K x n / (P - Ps) (м 3 /ч)

L - искомый объем вентиляции, м 3 ; К - объем углекислоты, выделяемой 1 человеком в час (22,6 л); n - количество людей в помещении; Р - максимально допустимое содержание углекислоты в воздухе помещений в промиллях (1% 0 или 1,0 л/м кубического воздуха); Рs - содержание углекислоты в атмосферном воздухе (0,4 промилли или 0,4 л/ м 3)

В расчете на 1 человека объем потребного вентиляционного воздуха составляет в расчете на 1 человека 37,7 м 3 в час. Исходя из нормы вентиляционного воздуха, устанавливают размеры воздушного куба, который в обычных жилых помещениях должен быть не менее 25 м 3 при расчете на взрослого человека. Необходимая вентиляция при этом достигается при 1,5-кратном обмене воздуха в час (37,7:25=1,5).

2. Косвенный метод основан на предварительном химическом определении содержания углекислоты в воздухе помещения и учета находящихся в нем людей.

Расчет кратности воздухообмена производится по формуле:

K = k x n /(P - Ps) x V)

где: К - искомая кратность воздухообмена; k - количество литров СО 2 , выдыхаемое человеком или другими источниками в час; n - число людей или других источников СО 2 ,находящихся в помещении; Р - обнаруженная концентрация СО 2 в промилле; Рs - средняя концентрация СО 2 в атмосфере в промилле; V- кубатура помещения в м 3

Например: n =10 чел, Р=1,5% 0 , V=250 м 3

K = 22,6 х 10 / (1,5 - 0,4) х 250) = 0,8 раза

Обычно за час происходит не более однократного обмена воздуха за счет фильтрации, а поэтому при наличии большего воздухообмена можно сделать заключение о необходимости более тщательной пригонке оконных рам и т.д., чтобы устранить неблагоприятное действие токов проникающего воздуха в холодное время года.

3. Кратность воздухообмена: при наличии вентиляции на естественной тяге (форточки, фрамуги) можно быть учтена путем учета объема воздуха, поступающего или удаляемого из помещения через форточки (фрамуги) в единицу времени. Для этого замеряют площадь просвета форточки (фрамуги) и скорость движения воздуха в проеме форточки. Скорость движения воздуха в проеме форточки замеряют крыльчатым анемометром и рассчитывают по формуле:

K = a x b x c / V

где: а - площадь форточки (фрамуги), м 2 ; b- скорость движения воздуха в проеме форточки (фрамуги), м/сек; с - время проветривания, сек; V - объем помещения, м 3 .

При делении полученного объема поступающего или удаляемого через форточку (фрамугу) воздуха расчет кратности воздухообмена в помещении определяется в час.

Пример расчета: В палате кубатурой 60 м 3 , где находится 3 человека, проветривание происходит за счет форточки, которую открывают на 10 мин каждый час. Скорость движения воздуха в проеме форточки - 1 м/сек, площадь форточки - 0,15 м 2 . Дать оценку воздухообмена в палате.

Решение: за 1 сек в палату поступает 0,15 м 3 , за 10 мин - 90 м 3 . Кратность воздухообмена равна:

K = 0,15 х 1 м/сек х 600 сек/ 60 = 1,5

Необходимый объем поступающего воздуха для трех человек в данной палате за час должен быть:

22,6х0,3/ (1-0,4) = 113 м 3

а кратность воздухообмена при этом равна: 113:60=1,8

Следовательно, фактическая кратность воздухообмена составляет 1,5 раза в 1 час при необходимом объеме вентиляции 1,6 раза в 1 час, что требует увеличение времени проветривания данной палаты.

КОНТРОЛЬНЫЕ ВОПРОСЫ ПО ТЕМЕ:

    Изменение чистоты воздуха в закрытых помещения больниц.

    Определение понятия «метаболиты» (антропотоксины).

    Показатели чистоты воздуха (органолептические, физические, химические).

    Бактериологические показатели загрязнения воздуха (для различных помещений больниц).

    Физиолого-гигиеническое значение углекислоты.

    Экспресс-метод определения СО 2 .

    Методы определения бактериальной загрязненности воздуха различных помещений лечебно-профилактических учреждений (седиментационный, фильтрационные).

    Седиментационно-аспирационный метод.

    Устройство и правила работы с прибором Кротова.

    Показатели чистоты воздуха закрытых помещений.

    Гигиенические требования к вентиляции различных структурных подразделений больниц.

    Понятие «кондиционирование воздуха».

    Санитарная оценка эффективности различных режимов вентиляции.

    Определение понятий «необходимый объем вентиляции» и «необходимая кратность вентиляции».

    Кратность обмена воздуха в больничных помещениях.

    Определение кратности воздухообмена при естественной вентиляции и ее гигиеническая оценка.

САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ.

I. Освоить методику определения содержания углекислоты в учебной аудитории экспресс-методом (описание приведено выше).

ПРОТОКОЛ

определения содержания СО 2 в воздухе помещения

Дата и время исследования

Краткая характеристика помещения и особенностей вентиляции

Количество занимающихся и характер их деятельности

Определение Объем воздуха, мл Содержание СО 2 (%)

Заключение:

При гигиенической оценке чистоты воздуха исходят из следующего: очень чистый воздух - концентрация углекислоты до 0,05%; воздух хорошей чистоты - до 0,07%; удовлетворительной чистоты - до 0,1%.

II. Освоить седиментационно-аспирационный метод изучения бакобсемененности. Устройство аппарата Кротова и принцип подсчета изложены выше.

ПРОТОКОЛ

определения количества микроорганизмов в воздухе помещения

Дата и время исследования

Наименование обследуемого помещения

Краткая характеристика:

а) санитарное состояние помещения

б) системы уборки

в) режима вентиляции

г) деятельности людей

Заключение: гигиеническая оценка бактериальной загрязненности воздуха помещений

Предложения по снижению бактериальной загрязненности воздуха помещений

Для санитарной оценки чистоты воздуха полученные показатели сравнивают с данными приведенной ниже таблицы 12.

Таблица 12

Показатели чистоты воздуха закрытых помещений из расчета 1 м 3 воздуха

В течение последних десяти лет за рубежом и в нашей стране возросло количество гнойно-воспалительных заболеваний вследствие инфекций, которые приобрели название «внутрибольничные» (ВБИ) – так определила Всемирная организация здравоохранения (ВОЗ). По анализу заболеваний, вызванных ВБИ, можно сказать, что их продолжительность и частота напрямую зависят от состояния воздушной среды больничных помещений. Для того, чтобы обеспечить требуемые параметры микроклимата в операционных залах (и производственных чистых помещениях), используются воздухораспределители однонаправленного потока. Как показали результаты контроля окружающей среды и анализа движения воздушных потоков, работа таких распределителей может обеспечить требуемые параметры микроклимата, однако отрицательно влияет на бактериологический состав воздуха. Для достижения необходимой степени защиты критической зоны нужно чтобы поток воздуха, который выходит из устройства, не терял форму границ и сохранял прямолинейность движения, другими словами, поток воздуха не должен сужаться или расширяться над выбранной для защиты зоной, в которой находится хирургический стол.

В структуре здания больницы помещения операционных требуют наибольшей ответственности из-за важности хирургического процесса и обеспечения необходимых условий микроклимата для того, чтобы этот процесс был удачно проведен и завершен. Основным источником выделения различных бактериальных частиц является непосредственно медицинский персонал, который генерирует частицы и выделяет микроорганизмы во время движения по помещению. Интенсивность появления новых частиц в воздушном пространстве помещения зависит от температуры, степени подвижности людей, скорости движения воздуха. ВБИ, как правило, перемещается по помещению операционного зала с воздушными потоками, и никогда не падает вероятность ее проникновения в уязвимую полость раны оперируемого больного. Как показали наблюдения, неправильная организация работы систем вентиляции обычно приводит к настолько быстрому накоплению инфекции в помещении, что ее уровень может превысить допустимую норму .

Уже несколько десятков лет зарубежные специалисты пытаются разработать системные решения по обеспечению необходимых условий воздушной среды операционных палат. Поток воздуха, который поступает в помещение, должен не только поддерживать параметры микроклимата, ассимилировать вредные факторы (тепло, запах, влажность, вредные вещества), но и поддерживать защиту выбранных зон от возможности попадания в них инфекции, а значит - обеспечивать требуемую чистоту воздуха операционных. Зона, в которой проводят инвазивные операции (проникновение в организм человека), называется «критической» или операционной зоной . Стандартом такая зона определяется как «операционная санитарно-защитная зона», под этим понятием подразумевается пространство, в котором размещены операционный стол, аппаратура, столики для инструментов, и находится медицинский персонал. В есть такое понятие, как «технологическое ядро». Оно относится к зоне, в которой ведутся производственные процессы в условиях стерильности, эту зону можно по смыслу соотнести с операционной.

Для того, чтобы предотвратить проникновение бактериального загрязнения в самые критические области, широкое применение получили способы экранирования, в основе которого лежит использование вытеснения воздушного потока. С этой целью были разработаны воздухораспределители ламинарного потока воздуха, имеющие различную конструкцию. Позже «ламинарный» стал называться «однонаправленным» потоком. Сегодня можно встретить самые разные варианты названия воздухораспределяющих устройств для чистоты помещений, например, «ламинарный потолок», «ламинар», «операционная система чистого воздуха», «операционный потолок» и прочие, но от этого их суть не меняется. Распределитель воздуха встраивается в конструкцию потолка над защищаемой зоной помещения. Он может быть различных размеров, это зависит от расхода воздуха. Оптимальная площадь такого потолка не должна быть менее 9 м 2 , для того чтобы он мог полностью перекрыть зону со столами, персоналом и оборудованием. Вытесняющий поток воздуха малыми порциями медленно поступает сверху вниз, отделяя, таким образом, асептическое поле зоны операционного воздействия, зону, где передается стерильный материал от зоны окружающей среды. Воздух удаляется из нижней и верхней зон защищаемого помещения одновременно. В потолок встраиваются HEPA-фильтры (класс Н по ), которые пропускают через себя приток воздуха. Фильтры только задерживают живые частицы, не обеззараживая их.

В последнее время на мировом уровне возросло внимание к вопросам обеззараживания воздушной среды больничных помещений и других учреждений, в которых присутствуют источники бактериальных загрязнений. В документах изложены требования о том, что необходимо обеззараживать воздух операционных помещений с эффективностью деактивации частиц от 95% и выше. Обеззараживанию подлежат также оборудование климатических систем и воздуховод . Бактерии и частицы, которые выделяет хирургический персонал, поступают в воздушную среду помещения непрерывно и накапливаются в ней. Для того, чтобы не дать концентрации вредных веществ в помещении достичь предельно допустимого уровня , необходимо постоянно контролировать воздушную среду. Этот контроль проводится в обязательном порядке после монтажа климатической системы, ремонта или технического обслуживания, то есть в то время, когда используется чистое помещение.

Для проектировщиков уже стало привычным применение в операционных помещениях воздухораспределителей однонаправленного потока сверхтонкой очистки со встроенными фильтрами потолочного типа.

Потоки воздуха, имеющие большие объемы, медленно движутся вниз помещения, отделяя, таким образом, защищаемую зону от окружающего воздуха. Однако многие специалисты не переживают о том, что одними только этими решениями для поддержания необходимого уровня обеззараживания воздушной среды во время проведения хирургических операций не обойтись.

Предложено большое количество вариантов конструкций воздухораспределительных устройств, каждый из них получил свое применение в определенной области. Специальные операционные помещения между собой внутри своего класса делятся на подклассы в зависимости от назначения по степени чистоты. Например, операционные кардиохирургические, общего профиля, ортопедические и т.д. Для каждого класса определены свои требования к обеспечению чистоты.

Впервые воздухораспределители для чистых помещений были применены в середине 50-х годов прошлого столетия. С того времени распределение воздуха в производственных помещениях стало традиционным в тех случаях, когда необходимо обеспечить сниженные концентрации микроорганизмов или частиц, производится все это через перфорированный потолок . Поток воздуха движется в одном направлении через весь объем помещения, скорость при этом остается равномерной - примерно 0,3 – 0,5 м/с. Подача воздуха производится через группу воздушных фильтров, обладающих высокой эффективностью, которые размещены на потолке чистого помещения. Воздушный поток подается по принципу воздушного поршня, который стремительно движется вниз через все помещение, удаляя вредные вещества и загрязнения. Удаляется воздух через пол. Такое движение воздуха способно удалить аэрозольные загрязнения, источниками которых служат процессы и персонал. Организация такой вентиляции нацелена на обеспечение необходимой чистоты воздуха операционного помещения. Ее минус в том, что она требует большого расхода воздуха, что не экономично. Для чистых помещений класса ISO 6 (по классификации ISO) или класса 1 000 допускается воздухообмен 70-160 крат/ч. Уже позже на смену пришли более эффективные устройства модульного типа, имеющие меньшие размеры и низкие расходы, что позволяет выбирать приточное устройство, отталкиваясь от размеров зоны защиты и необходимых кратностей обмена воздуха в помещении в зависимости от его назначения.

Эксплуатация ламинарных воздухораспределителей

Ламинарные устройства предназначены для применения в чистых производственных помещениях для раздачи воздуха больших объемов. Для реализации необходимы специально спроектированные потолки, регулирование давления в помещении и напольные вытяжки. При соблюдении этих условий распределители ламинарного потока обязательно создадут необходимый однонаправленный поток, имеющий параллельные линии тока. Благодаря высокой кратности воздухообмена, в приточном потоке воздуха поддерживаются условия, близкие к изотермическим. Спроектированные для распределения воздуха при обширных воздухообменах, потолки обеспечивают низкую стартовую скорость потока за счет своей большой площади. Контроль изменения давления воздуха в помещении и результат работы вытяжных устройств обеспечивают минимальные размеры зон рециркуляции воздуха, здесь срабатывает принцип «один проход и один выход». Взвешенные частицы падают на пол и удаляются, поэтому их рециркуляция практически невозможна.

Однако в условиях операционного помещения такие воздухонагреватели работают несколько иначе. Чтобы не превысить допустимые уровни бактериологической чистоты воздушной среды в операционных помещениях, по расчетам значения воздухообмена составляют около 25 крат/ч, а бывает и меньше. Другими словами, эти значения не сопоставимы со значениями, рассчитанными для производственных помещений. Чтобы поддерживать стабильное движение воздушных потоков между операционной и соседними помещениями, в операционной поддерживается избыточное давление. Воздух удаляется через вытяжные устройства, которые установлены симметрично в стенах нижней зоны. Для раздачи меньших объемов воздуха используются ламинарные устройства меньшей площади, устанавливаются они непосредственно над критической зоной помещения как островок посередине комнаты, а не занимают весь потолок.

По результатам наблюдений такие ламинарные воздухораспределители не всегда смогут обеспечить однонаправленный поток. Поскольку разница между температурой в приточной струе воздуха и температурой окружающей воздушной среды в 5-7 °С неизбежна, воздух более холодный, выходящий из приточного устройства, опустится гораздо быстрее, чем однонаправленный изотермический поток. Это привычное явление для работы потолочных диффузоров, установленных в общественных помещениях. Мнение о том, что ламинары обеспечивают однонаправленный стабильный воздушный поток в любом случае, независимо от того, где и как их применяют, ошибочно. Ведь в реальных условиях скорость вертикального низкотемпературного ламинарного потока будет расти по мере опускания к полу.

С увеличением объема приточного воздуха и снижением его температуры по отношению к воздуху помещения увеличивается ускорение его потока. Как показано в таблице, благодаря применению ламинарной системы, площадь которой 3 м 2 , а температурный перепад 9 °С, скорость воздуха на расстоянии 1,8 м от выхода увеличивается в три раза. На выходе из ламинарного устройства скорость воздуха составляет 0,15 м/с, а в районе операционного стола - 0,46 м/с, что превышает допустимый уровень . Многие исследования уже давно доказали, что при повышенной скорости приточного потока его «однонаправленность» не сохраняется.

Расход воздуха, м 3 /(ч м 2) Давление, Па Скорость воздуха на расстоянии 2 м от панели, м/с
3 °С T 6 °С T 8 °С T 11 °С T NC
Одиночная панель 183 2 0,10 0,13 0,15 0,18 <20
366 8 0,18 0,20 0,23 0,28 <20
549 18 0,25 0,31 0,36 0,41 21
732 32 0,33 0,41 0,48 0,53 25
1,5 – 3,0 м 2 183 2 0,10 0,15 0,15 0,18 <20
366 8 0,18 0,23 0,25 0,31 22
549 18 0,25 0,33 0,41 0,46 26
732 32 0,36 0,46 0,53 30
Более 3 м 2 183 2 0,13 0,15 0,18 0,20 21
366 8 0,20 0,25 0,31 0,33 25
549 18 0,31 0,38 0,46 0,51 29
732 32 0,41 0,51 33

Результаты анализа контроля воздушной среды в помещениях операционных, проводимого Льюисом (Lewis, 1993) и Салвати (Salvati, 1982), выявили, что в некоторых случаях использование ламинарных установок с завышенными скоростями воздуха обуславливает рост уровня обсемененности воздуха в районе хирургического разреза, что может привести к его заражению.

Зависимость изменения скорости потока воздуха от температуры приточного воздуха и величины площади ламинарной панели отражена в таблице. При движении воздуха от начальной точки линии тока будут идти параллельно, затем границы потока поменяются, произойдет сужение в направлении к полу, а, следовательно, он уже не сможет защищать зону, которую определили размеры ламинарной установки. Имея скорость 0,46 м/с, поток воздуха захватит малоподвижный воздух помещения. А поскольку в помещение непрерывно поступают бактерии, в поток воздуха, выходящего из приточного устройства, будут попадать зараженные частицы. Этому содействует рециркуляция воздуха, которая возникает из-за подпора воздуха в помещении.

Для поддержания чистоты операционных помещений, согласно нормам , необходимо обеспечить дисбаланс воздуха за счет увеличения притока на 10% больше, чем вытяжка. Избыточный воздух поступает в смежные, не очищенные помещения. В современных операционных часто используются герметичные раздвижные двери, тогда избыточный воздух не может выйти и циркулирует по помещению, после чего забирается снова в приточное устройство с помощью встроенных вентиляторов, далее он проходит очистку в фильтрах и вторично подается в помещение. Циркулирующий поток воздуха собирает все загрязненные вещества из воздуха помещения (если он будет двигаться вблизи приточного потока, то может его загрязнить). Поскольку происходит нарушение границ потока, неизбежно подмешивание в него воздуха из пространства помещения, а, следовательно, и проникновение в защищаемую стерильную зону вредных частиц.

Повышенная подвижность воздуха влечет за собой интенсивное отслоение частиц отмершей кожи с открытых участков кожного покрова медицинского персонала, после чего они попадают в хирургический разрез. Однако, с другой стороны, развитие инфекционных заболеваний в период реабилитации после операции является следствием гипотермического состояния больного, которое усугубляется при воздействии на него подвижных потоков холодного воздуха. Итак, рационально работающий традиционный воздухораспределитель ламинарного потока в чистом производственном помещении может принести не только пользу, но и вред в процессе операции, проводимой в обычной операционной.

Такая особенность характерна для ламинарных устройств со средней площадью около 3 м 2 – оптимальной для защиты операционной зоны. По американским требованиям , скорость потока воздуха на выходе из ламинарного устройства не должна быть выше 0,15 м/с, то есть с площади 0,09 м 2 в помещение должно приходить 14 л/с воздуха. В данном случае будет поступать 466 л/с (1677,6 м 3 /ч) или около 17 крат/ч. Поскольку согласно нормативная величина воздухообмена в операционных помещениях должна составлять 20 крат/ч, согласно – 25 крат/ч, то 17 крат/ч вполне соответствует требуемым нормам. Выходит, что значение 20 крат/ч подходит для помещения, имеющего объем 64 м 3 .

По нынешним нормам площадь общехирургического профиля (стандартной операционной) должна быть не менее 36 м 2 . Однако к операционным, предназначенным для проведения более сложных операций (ортопедических, кардиологических и т.д.), предъявляются более высокие требования, зачастую объем таких операционных - около 135 – 150 м 3 . Для таких случаев потребуется система распределения воздуха, имеющая большую площадь и производительность воздуха.

Если организуется приток воздуха для операционных большего размера, это приводит к возникновению проблемы поддержания ламинарности потока от уровня на выходе до операционного стола. Проводились исследования потоков воздуха в нескольких операционных помещениях. В каждом из них устанавливались ламинарные панели, которые по занимаемой площади можно разделить на две группы: 1,5 – 3 м 2 и более 3 м 2 , а также были построены экспериментальные установки для кондиционирования воздуха, которые позволяют менять значение температуры приточного воздуха. В ходе исследования были проведены замеры скорости поступающего воздушного потока при различных его расходах и изменении температуры; эти замеры можно увидеть в таблице.

Критерии чистоты операционных помещений

Для правильной организации циркуляции и распределения воздуха в помещении необходимо выбрать рациональный размер приточных панелей, обеспечить нормативную скорость потока и температуру приточного воздуха. Однако эти факторы не гарантируют абсолютное обеззараживание воздуха. Более 30 лет ученые решают вопрос обеззараживания операционных помещений и предлагают разные противоэпидемиологические мероприятия. Сегодня же перед требованиями современных нормативных документов по эксплуатации и проектированию больничных помещений стоит цель обеззараживания воздуха, где основным способом предупреждения накопления и распространения инфекций являются системы ОВК .

Например, согласно стандарту , главная цель его требований – обеззараживание, а в сказано, что «правильно спроектированная система ОВК сводит к минимуму воздушно-капельное распространение вирусов, спор грибков, бактерий и других биологических загрязнений», главную роль в контроле инфекций и других вредных факторов играет система ОВК. В определены требования к системам кондиционирования воздуха помещений, которые говорят о том, что проектирование системы подачи воздуха должно обеспечить минимизацию проникновения бактерий вместе с воздухом в чистые зоны, и поддержать максимально возможный уровень чистоты в оставшейся части операционного помещения.

Однако в нормативных документах не содержатся прямые требования, отражающие определение и контроль эффективности обеззараживания помещений с различными способами вентиляции. Поэтому при проектировании приходится заниматься поисками, которые требуют много времени и не дают заниматься основной работой.

Было выпущено большое количество нормативной литературы о проектировании систем ОВК для операционных залов, в ней описаны требования к обеззараживанию воздушной среды, которым проектировщикоу достаточно трудно соответствовать по целому ряду причин. Для этого мало только знать современное обеззараживающее оборудование и правила работы с ним, нужно еще поддерживать дальнейший своевременный эпидемиологический контроль воздуха в помещениях, что и создает представление качества работы систем ОВК. Это, к сожалению, не всегда соблюдается. Если производимая оценка чистоты производственных помещений ориентируется на наличие в нем частиц (взвешенных веществ), то показатель чистоты в чистых больничных помещениях представлен живыми бактериальными или колониеобразующими частицами, их допустимые уровни приведены в . Чтобы не превысить эти уровни, нужен регулярный контроль воздуха помещений по микробиологическим показателям, для этого требуется вести подсчет микроорганизмов. Методика сбора и подсчета для оценки уровня чистоты воздушной среды не была приведена ни в одном нормативном документе. Очень важно, что подсчет микроорганизмов должен производиться в рабочем помещении во время проведения операции. Но для этого требуется готовый проект и установка системы распределения воздуха. Степень обеззараживания или эффективности работы системы определить до начала работы в операционном зале невозможно, устанавливается это только во время проведения хотя бы нескольких операций. Здесь возникает ряд трудностей для инженеров, ведь необходимые исследования противоречат соблюдению противоэпидемической дисциплины больничных помещений.

Способ воздушных завес

Правильно организованная совместная работа притока и удаления воздуха обеспечивает требуемый воздушный режим операционного зала. Для улучшения характера движения потоков воздуха в операционной необходимо обеспечить рациональное взаиморасположение вытяжных и приточных устройств.

Рис. 1. Анализ работы воздушной завесы

Использование как площади всего потолка для распределения воздуха, так и всего пола для отведения является невозможным. Вытяжные устройства на полу – это негигиенично, поскольку они быстро загрязняются и трудно очищаются. Сложные, громоздкие и дорогие системы не получили широкого распространения в небольших операционных палатах. Поэтому наиболее рациональным считается «островное» размещение ламинарных панелей над защищаемой зоной и установка вытяжных отверстий в нижней части помещения. Это дает возможность организовать потоки воздуха по аналогии с чистыми промышленными помещениями. Этот способ более дешевый и компактный. Успешно применяются воздушные завесы, выступающие как защитный барьер. Воздушная завеса соединяется с потоком приточного воздуха, образуя узкую «оболочку» из воздуха с большей скоростью, которую специально создают по периметру потолка. Такая завеса постоянно работает на вытяжку и не дает поступать в ламинарный поток загрязненному окружающему воздуху.

Чтобы лучше понять принцип работы воздушной завесы, можно представить операционное помещение с вытяжкой, установленной со всех четырех сторон комнаты. Приток воздуха, который поступает из расположенного в центре потолка «ламинарного островка», может только опускаться вниз, при этом расширяясь в стороны стен по мере приближения к полу. Это решение позволит уменьшить зоны рециркуляции и размеры участков застоя, где собираются вредные микроорганизмы, предотвратить смешение воздуха помещения с ламинарным потоком, снизить его ускорение, стабилизировать скорость и получить перекрытие нисходящим потоком всей стерильной зоны. Это способствует изоляции защищаемой зоны от окружающего воздуха и позволяет удалить из нее биологические загрязнители.

Рис. 2 показывает стандартную конструкцию воздушной завесы, имеющей щели по периметру комнаты. Если организовать вытяжку по периметру ламинарного потока, произойдет его растягивание, воздушный поток расширится и заполнит всю зону под завесой, и как результат предотвращение эффекта «сужения» и стабилизация требуемой скорости ламинарного потока.

Рис. 2. Схема воздушной завесы

На рис. 3 представлены значения фактической скорости воздуха при правильно спроектированной воздушной завесе. Они наглядно показывают взаимодействие воздушной завесы с ламинарным потоком, который движется равномерно. Воздушная завеса позволяет избежать установки громоздкой вытяжной системы на весь периметр помещения. Вместо нее, как принято в операционных, в стенах устанавливается традиционная вытяжка. Воздушная завеса служит защитой зоны, охватывающей хирургический персонал и стол, не дает возвращаться загрязненным частицам в начальный воздушный поток.

Рис. 3. Фактический профиль скоростей в сечении воздушной завесы

Какого же уровня обеззараживания можно добиться при использовании воздушной завесы? Если ее плохо спроектировать, то она не принесет большего эффекта, чем ламинарная система. Ошибиться можно на высокой скорости воздуха, тогда такая завеса может «вытягивать» воздушный поток быстрее, чем нужно, и он не успеет достичь операционного стола. Неконтролируемое поведение потока может дать угрозу проникновения зараженных частиц в защищаемую зону с уровня пола. Также завеса с недостаточной скоростью всасывания не сможет полностью шибировать воздушный поток и может в него втянуться. В таком случае воздушный режим операционной будет такой же, как при применении только ламинарного устройства. Во время проектирования нужно правильно выявить диапазон скоростей и выбрать соответствующую систему. От этого зависит расчет характеристик обеззараживания.

Воздушные завесы имеют целый ряд явных преимуществ, но не стоит применять их везде, ведь не всегда требуется создание стерильного потока во время операции. Решение о том, насколько необходимо обеспечивать уровень обеззараживания воздуха, принимается совместно с хирургами, участвующими в данных операциях.

Заключение

Вертикальный ламинарный поток ведет себя не всегда предсказуемо, что зависит от условий его использования. Ламинарные панели, которые эксплуатируются в чистых производственных помещениях, зачастую не обеспечивают необходимый уровень обеззараживания в операционных залах. Установка систем воздушных завес помогает управлять характером движения вертикальных ламинарных воздушных потоков. Воздушные завесы помогают осуществлять бактериологический контроль воздуха в операционных помещениях, особенно при длительных хирургических вмешательствах и постоянном нахождении пациентов со слабой иммунной системой, для которых огромным риском являются воздушные инфекции.

Статья подготовлена А. П. Борисоглебской с использованием материалов журнала «ASHRAE».

Литература

  1. СНиП 2.08.02–89*. Общественные здания и сооружения.
  2. СанПиН 2.1.3.1375–03. Гигиенические требования к размещению, устройству, оборудованию и эксплуатации больниц, родильных домов и других лечебных стационаров.
  3. Инструктивно-методические указания по организации воздухообмена в палатных отделениях и операционных блоках больниц.
  4. Инструктивно-методические указания по гигиеническим вопросам проектирования и эксплуатации инфекционных больниц и отделений.
  5. Пособие к СНиП 2.08.02–89* по проектированию учреждений здравоохранения. ГипроНИИздрав Минздрава СССР. М., 1990.
  6. ГОСТ ИСО 14644-1–2002. Чистые помещения и связанные с ними контролируемые среды. Ч. 1. Классификация чистоты воздуха.
  7. ГОСТ Р ИСО 14644-4–2002. Чистые помещения и связанные с ними контролируемые среды. Ч. 4. Проектирование, строительство и ввод в эксплуатацию.
  8. ГОСТ Р ИСО 14644-5–2005. Чистые помещения и связанные с ними контролируемые среды. Ч. 5. Эксплуатация.
  9. ГОСТ 30494–96. Здания жилые и общественные. Параметры микроклимата в помещениях.
  10. ГОСТ Р 51251–99. Фильтры очистки воздуха. Классификация. Маркировка.
  11. ГОСТ Р 52539–2006. Чистота воздуха в лечебных учреждениях. Общие требования.
  12. ГОСТ Р МЭК 61859–2001. Кабинеты лучевой терапии. Общие требования безопасности.
  13. ГОСТ 12.1.005–88. Система стандартов.
  14. ГОСТ Р 52249–2004. Правила производства и контроля качества лекарственных средств.
  15. ГОСТ 12.1.005–88. Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны.
  16. Инструктивно-методическое письмо. Санитарно-гигиенические требования к лечебно-профилактическим учреждениям стоматологического профиля.
  17. МГСН 4.12-97. Лечебно-профилактические учреждения.
  18. МГСН 2.01-99. Нормативы по теплозащите и тепловодоэлектроснабжению.
  19. Методические указания. МУ 4.2.1089-02. Методы контроля. Биологические и микробиологические факторы. Минздрав России. 2002.
  20. Методические указания. МУ 2.6.1.1892-04. Гигиенические требования по обеспечению радиационной безопасности при проведении радионуклидной диагностики с помощью радиофармпрепаратов. Классификация помещений ЛПУ.

Возможно ли применение гликоля в установках приточных систем вентиляции?

При проектировании зданий в районах с расчетной температурой наружного воздуха –40 °С и ниже (по параметрам Б) допускается применение воды с добавками, предотвращающими ее замерзание. В соответствии с этим применение водного раствора гликоля возможно для исключения риска замерзания воздухонагревателей.

Существуют нормы на помещения МРТ?

Специальных норм нет.

Существуют ли помещения в лечебных зданиях с категорией А по взрывопожароопасности?

Классификация помещений ЛПУ по категориям производства по ОНТП 24-86 приведена в ППБО 07-91 «Правила пожарной безопасности для учреждений здравоохранения». В соответствии с ними к категории А относятся: помещения для хранения ЛВЖ, хранения газовых баллонов, лакокрасочные мастерские, аккумуляторные (зарядные).

Какие нагревательные приборы применяются в палатах психиатрических больниц?

Следует применять приборы с гладкой поверхностью, устойчивой к ежедневному воздействию моющих и дезинфицирующих средств, исключающие скопление пыли и микроорганизмов во всех палатах.

Как поддерживать влажность в помещениях при применении систем вентиляции?

Для помещений палат в холодный период года можно, например, использовать пароувлажнители.

Возможно ли применение сплит-систем и фэнкойлов в помещениях лечебных учреждений?

В отношении сплит-систем: «применение сплит-систем допускается при наличии фильтров высокой эффективности (Н11-Н14) при обязательном соблюдении правил регламентных работ. Сплит-системы должны иметь положительное санитарно-эпидемиологическое заключение, выданное в установленном порядке», то есть сертификат на возможность применения в медицинских учреждениях. Можно рекомендовать установку сплит-систем и фэнкойлов в административных и вспомогательных помещениях. Применение данного оборудования в помещениях лечебного назначения не позволяет обеспечить требуемую подвижность воздуха (0,15–0,2 м/с), к тому же фэнкойлы создают шумовой фон, превышающий допустимые значения (Известны случаи применения фэнкойлов для снятия теплоизбытков от оборудования в технических помещениях КРТ.)

Есть четкое требование об обязательном наличии сертификата на оборудование для систем вентиляции и кондиционированию воздуха, применяемое в медицинских учреждениях?

В существующей нормативной литературе таких требований нет, тем не менее, к установке в ЛПУ должно быть принято оборудование в медицинском исполнении.

Как проектировать вентиляцию в маленьких встроенных или пристроенных стоматологических отделениях, занимающих этаж или часть этажа в здании?

Следует предусматривать самостоятельную приточно-вытяжную систему вентиляции для стоматологического отделения, приток в рентгенокабинет допускается осуществлять от общей системы приточной вентиляции с установкой обратного клапана, вытяжку предусматривать самостоятельную. В помещениях операционных требуется самостоятельная система кондиционирования с тремя ступенями очистки приточного воздуха и применением на конечной ступени фильтра класса H.

Можно ли обслуживать одной приточной системой помещения операционных, входящих в состав разных отделений («грязным»), расположенных на разных этажах?

Как правило, это отделения различного технологического назначения. В операционной должен быть обеспечен класс чистоты А. Чтобы не было переноса инфекции того или иного вида между операционными через систему вентиляции, следует каждую операционную (операционный блок каждого отделения) для рассматриваемого случая обслуживать самостоятельной приточно-вытяжной системой. Если несколько операционных в одном операционном блоке, их следует объединять для обслуживания одной системой вентиляции.

Нужно ли соблюдать требования к операционным поликлиник такие же, как требования к операционным больниц?

Да, следует. Операционная поликлиники рассматривается как малая операционная, в которой подачу воздуха следует производить через воздухораспределители слаботурбулентного потока.

Какие фильтры применяются в ЛПУ?

Для обеспечения требуемого класса чистоты помещения необходимо предусматривать в системах вентиляции и кондиционирования установку фильтров и устройств обеззараживания воздуха.

Системы вентиляции и кондиционирования воздуха помещений классов А и Б следует оснащать трехступенчатой системой очистки и обеззараживания приточного воздуха, помещения других классов допускается оснащать двухступенчатой системой.

Для отдельных ступеней фильтрации применяют воздушные фильтры очистки. Воздушные фильтры общего назначения (фильтры грубой и тонкой очистки), как правило, применяют в зависимости от ступени очистки:

Для ступени 1 – группы грубой очистки класса не ниже G4 карманного типа или F5 (или выше, как вариант) в зависимости от загрязненности наружного воздуха;

Для ступени 2 – группы тонкой очистки класса не ниже F7;

Для ступени 3 – группы высокой эффективности класса не ниже H11 и/или устройствами обеззараживания воздуха с эффективностью инактивации микроорганизмов и вирусов не менее 95 %.

При применении в качестве 1-й ступени очистки фильтра класса F5 и выше рекомендуется (для продления срока службы фильтров 2-й ступени) установка перед фильтром 1-й ступени дополнительно фильтра предварительной очистки класса G3 или G4.

Фильтры ступеней очистки 1 и 2 размещают непосредственно в приточных системах вентиляции или кондиционирования воздуха:

Ступень 1 – на входе наружного воздуха в приточную установку для защиты элементов приточной камеры от частиц;

Ступень 2 – на выходе из приточной установки для защиты воздуховодов от частиц.

Фильтры ступени очистки 3 размещают как можно ближе к обслуживаемому помещению или в самом обслуживаемом помещении после устройства обеззараживания воздуха (по необходимости).

При выборе схемы очистки воздуха для помещений классов чистоты А и Б необходимо учитывать показатели фоновых концентраций пыли в атмосферном воздухе, запрашиваемые в территориальных органах Росгидромета. Выбор схемы очистки воздуха проводят по согласованию с территориальными органами Роспотребнадзора.

Как производить увлажнение воздуха?

В соответствии с приведенными выше нормами увлажнение воздуха следует производить паром (парогенератором). Увлажнение воздуха водой допустимо при условии ее обеззараживания.

Конструкция устройств увлажнения воздуха и место их расположения должны исключать образование конденсата и капель влаги после увлажнителя и попадание их в приточную систему вентиляции. Устройства увлажнения воздуха форсуночного или пленочного типа устанавливают перед конечной ступенью фильтрации. В случае увлажнения воздуха паром устройство для распределения пара рекомендуется устанавливать непосредственно в канале воздуховода. Данные устройства следует размещать в доступном для обслуживания, очистки и дезинфекции месте.

Пароувлажнитель для подпитки подключаются к водопроводу. Для обеспечения надежной работы он дол-жен соответствовать по качеству воды требованиям производителя.

Для снижения концентрации микроорганизмов следует проводить обеззараживание воды.

Какие кондиционеры следует устанавливать в ЛПУ?

Оборудование систем кондиционирования (вентиляции) должно быть медицинского исполнения.

Что делается у нас, не знает никто. Картина в наших больницах наверняка много хуже. Судя по уровню действующих отраслевых нормативных документов, наше здравоохранение еще не подошло к пониманию проблемы. А проблема ведь ясна. Она ставилась в журнале «Технология чистоты», №1/96, еще 10 лет назад. В 1998 г. АСИНКОМ были разработаны «Нормы на чистоту воздуха в больницах», основанные на зарубежном опыте.

В том же году они были направлены в ЦНИИ эпидемиологии. В 2002 г. этот документ был представлен в Госсанэпиднадзор. Реакции не последовало в обоих случаях. Зато в 2003 г. был утвержден СанПиН 2.1.3.1375-03 «Гигиенические требования к размещению, устройству, оборудованию и эксплуатации больниц, родильных домов и других лечебных стационаров» — отсталый документ, требования которого порой противоречат законам физики (см. ниже).

Основное возражение против введения западных стандартов — «нет денег». Это неправда. Деньги есть. Но идут они не туда, куда надо. Десятилетний опыт аттестации помещений больниц силами Центра сертификации чистых помещений и Лаборатории испытаний чистых помещений показал, что фактическая стоимость операционных и палат интенсивной терапии превышает, порой в несколько раз, затраты на объекты, выполненные по европейским нормам и оснащенные западным оборудованием. При этом объекты не соответствуют современному уровню. Одна из причин — отсутствие должной нормативной базы.

Существующие стандарты и нормы

Техника чистых помещений в больницах запада применяется давно. Еще в 1961 г. в Великобритании профессор сэр Джон Чарнлей (John Charnley) оборудовал первую операционную «greenhouse» со скоростью нисходящего с потолка потока воздуха 0,3 м/с. Это явилось радикальным средством снижения риска инфицирования больных при трансплантации тазобедренных суставов.

До этого у 9 % больных происходило инфицирование во время операции,и требовалась повторная трансплантация. Это была истинная трагедия для больных. В 70-80-е гг. технология чистоты на основе систем вентиляции и кондиционирования воздуха и применения высокоэффективных фильтров стала неотъемлимым элементом в больницах Европы и Америки. Тогда же в Германии, Франции и Швейцарии появились первые стандарты на чистоту воздуха в больницах. В настоящее время выходит второе поколение стандартов, основанных на современном уровне знаний.

Швейцария

В 1987 г. Швейцарским институтом здравоохранения и лечебных учреждений (SKI — Schweizerisches Institut fur Gesundheits und Krankenhauswesen) было принято «Руководство по строительству, эксплуатации и обслуживанию систем подготовки воздуха в больницах» — SKI, Band 35, «Richtlinien fur Bau, Betrieb und Uberwachung von raumlufttechnischen Anlagen in Spitalern». Руководство различает три группы помещений — табл. 1.

В 2003 г. Швейцарским обществом инженеров по отоплению и кондиционированию было принято руководство SWKI 99-3 «Системы отопления, вентиляции и кондиционирования воздуха в больницах (проектирование, строительство и эксплуатация)». Его существенным отличием является отказ от нормирования чистоты воздуха по микробным загрязнениям (КОЕ) для оценки работы системы вентиляции и кондиционирования. Критерием оценки является концентрация частиц в воздухе (не микроорганизмов).

Руководство устанавливает четкие требования к подготовке воздуха для операционных и дает оригинальную методику оценки эффективности мер по обеспечению чистоты с помощью генератора аэрозолей. Подробный анализ руководства дан в статье А. Бруннера в журнале «Технология чистоты», №1/2006.

Германия

В 1989 г. в Германии был принят стандарт DIN 1946, ч. 4, «Техника чистых помещений. Системы обеспечения чистоты воздуха в больницах» — DIN 1946, Teil 4. Raumlufttechik. Raumlufttechishe Anlagen in Krankenhausern, Dezember, 1989 (пересмотрен в 1999 г.). В настоящее время подготовлен проект стандарта DIN, содержащий показатели чистоты как по микроорганизмам (метод седиментации), так и по частицам.

Стандарт детально регламентирует требования к гигиене и методам обеспечения чистоты. Установлены классы помещений Iа (высоко асептические операционные), Iв (другие операционные) и II. Для классов Iа и Ib даны требования к максимально допустимому загрязнению воздуха микроорганизмами (метод седиментации) — см. табл. 2. Установлены требования к фильтрам для различных ступеней очистки воздуха: F5 (F7) + F9 + H13.

Обществом немецких инженеров VDI подготовлен проект стандарта VDI 2167, часть «Оборудование зданий больниц — отопление, вентиляция и кондиционирование воздуха». Проект идентичен швейцарскому руководству SWKI 99-3 и содержит лишь редакционные правки, вызванные некоторыми различиями между «швейцарским» немецким и «немецким» немецким языками.

Франция

Стандарт на чистоту воздуха AFNOR NFX 90-351, 1987 в больницах был принят во Франции в 1987 г. и пересмотрен в 2003 г. Стандарт установил предельно допустимые концентрации частиц и микроорганизмов в воздухе. Концентрация частиц определяется по двум размерам: ≥ 0,5 мкм и ≥ 5,0 мкм. Важным фактором является проверка чистоты только в оснащенном состоянии чистых помещений .

Более подробно требования французского стандарта приведены в статье Fabrice Dorchies «Франция: стандарт на чистоту воздуха в больницах» (журнал «Технология чистоты», №1/2006). Перечисленные стандарты детализируют требования к операционным, устанавливают число ступеней фильтрации, типы фильтров, размеры ламинарных зон и т.д.

Проектирование чистых помещений больниц ведется на основе стандартов серии ИСО 14644 (ранее велось на основе Fed. Std. 209D).

Россия

В 2003 г. принят СанПиН 2.1.3.1375-03 «Гигиенические требования к размещению, устройству, оборудованию и эксплуатации больниц, родильных домов и других лечебных стационаров». Ряд требований этого документа вызывает недоумение. Например, приложение 7 устанавливает санитарно-микробиологические показатели для помещений разных классов чистоты — см. табл. 5.

В России классы чистоты чистых помещений были установлены ГОСТ Р 50766-95, затем ГОСТ Р ИСО 14644-1- 2001. В 2002 г. последний стандарт стал стандартом СНГ ГОСТ ИСО 14644-1- 2002 «Чистые помещения и связанные с ними контролируемые среды, ч. 1. Классификация чистоты воздуха». Логично ожидать, что отраслевые документы должны соответствовать национальному стандарту, не говоря уже о том, что определения «условно чистые», «условно грязные» для классов чистоты, «грязный потолок» для потолков выглядят странно.

СанПиН 2.1.3.1375-03 устанавливает для «особо чистых» помещений (операционные, асептические боксы для гематологических, ожоговых пациентов) показатель общего числа микроорганизмов в воздухе, КОЕ/м 3 , до начала работы (оснащенное состояние) «не более 200». А стандарт Франции NFX 90-351 — не более 5. Эти больные должны находиться под однонаправленным (ламинарным) потоком воздуха.

При наличии 200 КОЕ/м 3 больной в состоянии иммунодефицита (асептический бокс гематологического отделения) неизбежно погибнет. По данным ООО «Криоцентр» (А.Н. Громыко) микробная загрязненность воздуха в роддомах Москвы колеблется от 104 до 105 КОЕ/м 3 , причем последняя цифра относится к роддому, куда привозят бомжей. Воздух московского метро содержит примерно 700 КОЕ/м 3 . Это лучше, чем в «условно чистых» помещениях больниц по СанПиНу. В п. 6.20 вышеуказанного СанПиНа сказано «В стерильные помещения воздух подается ламинарными или слаботурбулентными струями (скорость воздуха менее 0,15 м/с)». Это противоречит законам физики: при скорости менее 0,2 м/с поток воздуха не может быть ламинарным (однонаправленным), а при менее 0,15 м/с он становится не «слабо», а сильнотурбулентным (неоднонаправленным).

Цифры СанПиНа — не безобидные, именно по ним ведется контроль объектов и экспертиза проектов органами санитарно-эпидемиологического надзора. Можно выпускать сколь угодно передовые стандарты, но пока существует СанПиН 2.1.3.1375-03, дело с места не сдвинется. Речь идет не просто об ошибках. Речь идет об общественной опасности таких документов. В чем причина их появления?

  • Незнание европейских норм и основ физики?
  • Знание, но:
    • намеренное ухудшение условий в наших больницах?
    • лоббирование чьих-то интересов (например, производителей малоэффективных средств очистки воздуха)?

Как это увязать с защитой здоровья населения и правами потребителей? Для нас, потребителей услуг здравоохранения, такая картина абсолютно неприемлема. Тяжелыми и ранее неизлечимыми болезнями являются лейкемия и другие заболевания крови. Сейчас решение есть, причем решение единственное: трансплантация костного мозга, затем подавление иммунитета организма на период адаптации (1-2 месяца).

Чтобы человек, находясь в состоянии иммунодефицита не погиб, его помещают в условия стерильного воздуха (под ламинарный поток). В мире эта практика известна десятки лет. Пришла она и в Росию. В 2005 г. в Нижегородской областной детской клинической больнице были оборудованы две палаты интенсивной терапии для трансплантации костного мозга. Палаты выполнены на уровне современной мировой практики.

Это единственное средство спасения обреченных детей. Постель больного находится в зоне однонаправленного потока воздуха (класс 5 ИСО). А вот в ФГУЗ «Центр гигиены и эпидемиологии Нижегородской области» устроили безграмотную и амбициозную писчебумажную волокиту, задержав ввод объекта на полгода. Понимают ли эти служащие, что на их совести могут быть не спасенные детские жизни? Ответ нужно дать матерям, глядя им в глаза.

Разработка национального стандарта России

Анализ опыта зарубежных коллег позволил выделить несколько ключевых вопросов, некоторые из которых вызвали бурную дискуссию при обсуждении стандарта.

Группы помещений

Зарубежные стандарты в основном рассматривают операционные. Некоторые стандарты рассматривают изоляторы и другие помещения. Комплексная систематизация помещений всех назначений с ориентацией на классификацию чистоты по ИСО отсутствует. В принятом стандарте введены пять групп помещений в зависимости от риска инфицирования больного. Отдельно (группа 5) выделены изоляторы и гнойные операционные. Классификация помещений выполнена с учетом факторов риска.

Критерий оценки чистоты воздуха

Что взять за основу оценки чистоты воздуха:

  • частицы?
  • микроорганизмы?
  • то и другое?

Развитие норм в западных странах по этому критерию имеет свою логику. На первых этапах чистота воздуха в больницах оценивалась только по концентрации микроорганизмов. Затем стал применяться и счет частиц. Еще в 1987 г. стандарт Франции NFX 90-351 ввел контроль чистоты воздуха как по частицам, так и по микроорганизмам. Счет частиц с помощью лазерного счетчика частиц позволяет оперативно в режиме реального времени определять концентрацию частиц, в то время как для инкубации микроорганизмов на питательней среде требуется несколько дней.

Следующий вопрос: а что, собственно, проверяется при аттестации чистых помещений и систем вентиляции? Проверяется качество их работы и правильность проектных решений. Эти факторы однозначно оцениваются концентрацией частиц, от которой зависит число микроорганизмов. Конечно, микробная обсемененность зависит от чистоты стен, оборудования, персонала и пр. Но эти факторы относятся к текущей работе, к эксплуатации, а не к оценке инженерных систем.

В связи с этим в Швейцарии (SWKI 99-3) и Германии (VDI 2167) сделан логичный шаг вперед: установлен контроль воздуха только по частицам . Учет микроорганизмов остается функцией эпидемиологической службы больницы и направлен на текущий контроль чистоты. Эта мысль была заложена и в проект российского стандарта. На данном этапе от нее пришлось отказаться ввиду категорически отрицательной позиции представителей санэпиднадзора.

Предельно допустимые нормы по частицам и микроорганизмам для различных групп помещений взяты по аналогам с западными стандартами и на основе собственного опыта. Классификация по частицам соответствует ГОСТ ИСО 14644-1.

Состояния чистого помещения

ГОСТ ИСО 14644-1 различает три состояния чистых помещений. В построенном состоянии проверяется выполнение ряда технических требований. Концентрация загрязнений, как правило, не нормируется. В оснащенном состоянии помещение полностью укомплектовано оборудованием, но отсутствует персонал и не проводится технологический процесс (для больниц — отсутствует медперсонал и больной).

В эксплуатируемом состоянии в помещении выполняются все процессы, предусмотренные назначением помещения. Правила производства лекарственных средств — GMP (ГОСТ Р 52249- 2004) предусматривают контроль загрязнений частицами как в оснащенном состоянии, так и в эксплуатируемом состоянии, а микрорганизмами — только в эксплуатируемом состоянии. В этом есть логика.

Выделения загрязнений от оборудования и персонала при производстве лекарственных средств можно нормировать и обеспечить соответствие нормам техническими и организационными мерами. В лечебном учреждении есть ненормируемый элемент — больной. Его и медперсонал невозможно одеть в комбинезон для класса 5 ИСО и полностью закрыть всю поверхность тела. Из-за того, что источниками загрязнений в эксплуатируемом состояниибольничного помещения управлять нельзя, устанавливать нормы и проводить аттестацию помещений в эксплуатируемом состоянии бессмысленно, по крайней мере, по частицам. Это понимали разработчики всех зарубежных стандартов. Нами также включен в ГОСТ контроль помещений только в оснащенном состоянии.

Размеры частиц

Изначально в чистых помещениях контролировалось загрязнение частицами с размерами, равными и большими 0,5 мкм (≥ 0,5 мкм). Затем, исходя из конкретных областей применения, стали появляться требования к концентрации частиц ≥ 0,1 мкм и ≥ 0,3 мкм (микроэлектроника), ≥ 0,3 0,5 мкм (производство лекарственных средств в дополнение к частицам ≥ 0,5 мкм) и пр. Анализ показал, что в больницах нет смысла следовать шаблону «0,5 и 5,0 мкм», а достаточно ограничиваться контролем частиц ≥ 0,5 мкм.

Скорость однонаправленного потока

Выше уже отмечалось, что СанПиН 2.1.3.3175-03, установив предельно допустимые значения скорости однонаправленного (ламинарного) потока 0,15 м/с, нарушил законы физики. С другой стороны, вводить в медицине норму GMP 0,45 м/с ±20 % нельзя. Это приводит к дискомфорту, поверхостному обезвоживанию раны, может травмировать ее и пр. Поэтому для зон с однонаправленным потоком (операционные, палаты интенсивной терапии) установлена скорость от 0,24 до 0,3 м/с. Это грань допустимого, уходить от которой нельзя. Ниже показано распределение модуля скорости потока воздуха в зоне операционного стола для реальной операционной одной из больниц, полученное методом компьютерного моделирования. Видно, что при малой скорости исходящего потока он быстро турбулируется и не выполняет полезной функции.

Размеры зоны с однонаправленным потоком воздуха

Ламинарная зона с «глухой» плоскостью внутри бесполезна. В операционной Центрального института травматологии и ортопедии (ЦИТО) автор шесть лет назад оперировался по поводу полученной травмы. Известно, что однонаправленный поток воздуха сужается под углом примерно 15% и то, что было в ЦИТО, смысл не имеет. Правильная схема (Klimed): Неслучайно западные стандарты предусматривают размеры потолочного диффузора, создающего однонаправленный поток 3х3 м, без «глухих» поверхностей внутри. Исключения допускаются для менее ответственных операций.

Решения по вентиляции и кондиционированию

Эти решения соответствуют западным стандартам, экономичны и эффективны. Сделаны некоторые изменения и упрощения без потери смысла. Например, в качестве финишных фильтров в операционных и палатах интенсивной терапии применены фильтры Н14 (вместо Н13), имеющие ту же стоимость, но значительно более эффективные.

Автономные устройства очистки воздуха

Автономные воздухоочистители являются эффективным средством обеспечения чистоты воздуха (кроме помещений групп 1 и 2). Они не требуют больших затрат, позволяют принимать гибкие решения и могут использоваться в массовом порядке, особенно в действующих больницах. На рынке представлен широкий выбор воздухоочистителей. Не все они эффективны, некоторые из них вредны (выделяют озон). Основная опасность — неудачный выбор воздухоочистителя. Лаборатория испытаний чистых помещений проводит экспериментальную оценку воздухоочистителей по показателям назначения. Опора на достоверные результаты — важное условие выполнения требований ГОСТа.

Методы испытаний

В руководстве SWKI 99-3 и проекте стандарта VDI 2167 дана методика испытаний операционных с использованием манекенов и генераторов аэрозолей (статья А. Бруннера). Применение этой методики в России вряд ли оправдано. В условиях небольшой по территории страны одна специализированная лаборатория может обслужить все больницы. Для России это нереально. С нашей точки зрения, и не нужно. С помощью манекенов отрабатываются типовые решения, которые закладываются в стандарт, а затем служат основой проектирования. Эти типовые решения отрабатываются в условиях института, что и сделано в г. Люцерн, Швейцария. В массовой практике типовые решения применяются непосредственно. На готовом объекте проводятся испытания на соответствие стандартам и проекту. ГОСТ Р 52539-2006 дает систематизированную программу испытаний чистых помещений больниц по всем необходимым параметрам.

Болезнь легионеров — спутник старых инженерных систем

В 1976 г. в одном из отелей Филадельфии проходил конгресс Американского легиона. Из 4000 участников 200 заболели, а 30 человек погибли. Причиной явился вид микроорганизмов, названный Legionella pneumophila в связи с упомянутым событием и насчитывающий более 40 разновидностей. Сама болезнь была названа болезнью легионеров. Симптомы заболевания проявляются через 2-10 дней после инфицирования в виде головной боли, болей в конечностях и горле, сопровождаемых лихорадкой.

Течение болезни сходно с обычной пневмонией, в связи с чем ее часто ошибочно диагностируют как пневмонию. По официальной оценке, в Германии с населением около 80 млн человек ежегодно страдают от болезни легионеров около 10 тыс. человек, но большинство случаев остаются нераскрытыми. В категорию риска входят люди с ослабленной иммунной системой, пожилые люди, маленькие дети, лица с хроническими заболеваниями и курильщики.

Инфекция передается воздушно-капельным путем. Возбудитель попадает в воздух помещения из старых систем вентиляции и кондиционирования, систем обеспечения горячей водой, душевых и пр. Legionella размножается особенно быстро в стоячей воде при температуре от 20 до 45 °С. При 50 °С происходит пастеризация, а при 70 °С — дезинфекция. Опасными источниками являются старые большие здания (в т.ч. больницы и роддома), имеющие системы вентиляции и горячее водоснабжение. О мерах борьбы с болезнью - читайте на стр. 36 (прим. Ред.)

* Особую опасность представляют аспергиллы — широко распространенные плесневые грибы, обычно безвредные для людей. Но они представляют опасность для здоровья иммунодефицитных больных (например, медикаментозная иммуносупрессия после трансплантации органов и тканей или больные с агранулоцитозом). Для таких больных ингаляция даже малых доз спор аспергилл может быть причиной тяжелых инфекционных заболеваний. На первом месте здесь находится легочная инфекция (пневмония). В больницах часто наблюдаются случаи инфицирования, связанные с проведением строительных работ или реконструкции. Эти случаи вызваны выделением спор аспергилл из строительных материалов во время проведения строительных работ, что требует принятия специальных защитных мер (SWKI 99-3).

* Использованы материалы статьи M. Hartmann «Keep Legionella bugs at bay», Cleanroom Technology, March, 2006.

Нормативная основа предупреждения внутрибольничных инфекций

А. Е. Федотов,
д-р техн. наук, президент АСИНКОМ

Пребывание человека в больнице опасно для здоровья.

Причина - внутрибольничные инфекции, в том числе вызываемые микроорганизмами, приспособившими ся к традиционным мерам гигиены и устойчивые к антибиотикам*.

Красноречивые данные об этом приведены в статье Fabrice Dorchies в настоящем номере журнала (стр. 28) . Что делается у нас, не знает никто. Картина в наших больницах наверняка много хуже. Судя по уровню действующих отраслевых нормативных документов, наше здравоохранение еще не подошло к пониманию проблемы.

А проблема ясна. Она ставилась в журнале «Технология чистоты» №1/9 еще 10 лет назад. В 1998 г. АСИНКОМ были разработаны «Нормы на чистоту воздуха в больницах», основанные на зарубежном опыте. В том же году они были направлены в ЦНИИ эпидемиологии. В 2002 г. этот документ был представлен в Госсанэпиднадзор. Реакции не последовало в обоих случаях.

Зато в 2003 г. был утвержден СанПиН 2.1.3.137503 «Гигиенические требования к размещению, устройству, оборудованию и эксплуатации больниц, родильных домов и других лечебных стационаров» - отсталый документ, требования которого порой противоречат законам физики (см. ниже).

Основное возражение против введения западных стандартов - «нет денег». Это не правда. Деньги есть. Но идут они не туда, куда надо. Десятилетний опыт аттестации по мещений больниц силами Центра сертификации чистых помещений и Лаборатории испытаний чистых помещений показал, что фактическая стоимость операционных и палат интенсивной терапии превышает порой в несколько раз затраты на объекты, выполненные по Европейским нормам и оснащенные западным оборудованием. При этом объекты не соответствуют современному уровню.

Одна из причин - отсутствие должной нормативной базы.

Существующие стандарты и нормы

Техника чистых помещений в больницах запада применяется давно. Еще в 1961 г. в Великобритании профессор сэр Джон Чарнлей (John Charnley) оборудовал первую операционную «greenhouse» со скоростью нисходящего с потолка потока воздуха 0,3 м/с. Это явилось радикальным средством снижения риска инфицирования больных при трансплантации тазобедренных суставов. До этого у 9 % больных происходило инфицирование во время операции, и требовалась повторная трансплантация. Это была истинная трагедия для больных.

В 70-80-е годы технология чистоты на основе систем вентиляции и кондиционирования воздуха и применения высокоэффективных фильтров стала неотъемлемым элементом в больницах Европы и Америки. Тогда же в Германии, Франции и Швейцарии появились первые стандарты на чистоту воздуха в больницах.

В настоящее время выходит второе поколение стандартов, основанных на современном уровне знаний.

Швейцария

В 1987 г. Швейцарским институтом здравоохранения и лечебных учреждений (SKI - Schweizerisches Institut fur Gesundheits- und Krankenhauswesen) было принято «Руководство по строительству, эксплуатации и обслуживанию систем подготовки воздуха в больницах» - SKI, Band 35, «Richtlinien fur Bau, Betrieb und Uberwachung von raumlufttechnischen Anlagen in Spitalern».

Руководство различает три группы помещений:

В 2003 г. Швейцарским обществом инженеров по отоплению и кондиционированию было принято руководство SWKI 9963 «Системы отопления, вентиляции и кондиционирования воздуха в больницах (проектирование, строительство и эксплуатация)».

Его существенным отличием является отказ от нормирования чистоты воздуха по микробным загрязнениям (КОЕ) для оценки работы системы вентиляции и кондиционирования.

Критерием оценки является концентрация частиц в воздухе (не микроорганизмов). Руководство устанавливает четкие требования к подготовке воздуха для операционных и дает оригинальную методику оценки эффективности мер по обеспечению чистоты с помощью генератора аэрозолей.

Подробный анализ руководства дан в статье А. Бруннера в настоящем номере журнала.

Германия

В 1989 г. в Германии был принят стандарт DIN 1946, часть 4 «Техника чистых помещений. Системы обеспечения чистоты воздуха в больницах» - DIN 1946, Teil 4. Raumlufttechik. Raumlufttechishe Anlagen in Krankenhausern, Dezember, 1989 (пересмотрен в 1999 г.).

В настоящее время подготовлен проект стандарта DIN, содержащий показатели чистоты как по микроорганизмам (метод седиментации), так и по частицам.

Стандарт детально регламентирует требования к гигиене и методам обеспечения чистоты.

Установлены классы помещений Iа (высокоасептические операционные), Ib (другие операционные) и II. Для классов Iа и Ib даны требования к максимально допустимому загрязнению воздуха микроорганизмами (метод седиментации):

Установлены требования к фильтрам для различных ступеней очистки воздуха: F5 (F7) + F9 + H13.

Обществом немецких инженеров VDI подготовлен проект стандарта VDI 2167, часть: Оборудование зданий больниц - отопление, вентиляция и кондиционирование воздуха. Проект идентичен Швейцарскому руководству SWKI 9963 и содержит лишь редакционные правки, вы званные некоторыми различиями между «швейцарским» немецким и «немецким» немецким языками.

Франция

Стандарт на чистоту воздуха AFNOR NFX 906351, 1987 в больницах был принят во Франции в 1987 г. и пересмотрен в 2003 г.

Стандарт установил предельно допустимые концентрации частиц и микроорганизмов в воздухе. Концентрация частиц определяется по двум размерам: ≥0,5 мкм и ≥5,0 мкм.

Важным фактором является проверка чистоты только в оснащенном состоянии чистых помещений. Более подробно требования французского стандарта приведены в статье Fabrice Dorchies «Франция: стандарт на чистоту воздуха в больницах» этого номера журнала.

Перечисленные стандарты детализируют требования к операционным, устанавливают число ступеней фильтрации, типы фильтров, размеры ламинарных зон и т. д.

Проектирование чистых помещений больниц ведется на основе стандартов серии ИСО 14644 (ранее велось на основе Fed. Std. 209D).

Россия

В 2003 г. принят СанПиН 2.1.3.1375603 «Гигиенические требования к размещению, устройству, оборудованию и эксплуатации больниц, родильных домов и других лечебных стационаров».

Ряд требований этого документа вызывает недоумение. Например, приложение 7 устанавливает санитарно-микробиологические показатели для помещений разных классов чистоты (*оснащенное состояние):

В России классы чистоты чистых помещений были установлены ГОСТ Р 50766695, затем ГОСТ Р ИСО 14644616 2001. В 2002 г. последний стандарт стал стандартом СНГ ГОСТ ИСО 146446162002 «Чистые помещения и связанные с ними контролируемые среды, Часть 1. Классификация чистоты воздуха». Логично ожидать, что отраслевые документы должны соответствовать национальному стандарту, не говоря уже о том, что определения «условно чистые», «условно грязные» для классов чистоты, «грязный потолок» для потолков выглядят странно.

СанПиН 2.1.3.1375603 устанавливает для «особо чистых» помещений (операционные, асептические боксы для гематологических, ожоговых пациентов) показатель общего числа микроорганизмов в воздухе (КОЕ/м 3) до начала работы (оснащенное состояние) «не более 200».

А стандарт Франции NFX 906351 - не более 5. Эти больные должны находиться под однонаправленным (ламинарным) потоком воздуха. При наличии 200 КОЕ/м 3 , больной в состоянии иммунодефицита (асептический бокс гематологического отделения) неизбежно погибнет.

По данным ООО «Криоцентр» (А. Н. Громыко) микробная загрязненность воздуха в роддомах Москвы колеблется от 104 до 105 КОЕ/м 3 , причем последняя цифра относится к роддому, куда привозят бомжей.

Воздух московского метро содержит примерно 700 КОЕ/м 3 . Это лучше, чем в «условно чистых» помещениях больниц по СанПиНу.

В п. 6.20 вышеуказанного СанПиНа сказано: «В стерильные помещения воздух подается ламинарными или слабо турбулентными струями (скорость воздуха менее 0,15 м/с)» .

Это противоречит законам физики: при скорости менее 0,2 м/с поток воздуха не может быть ламинарным (однонаправленным), а при менее 0,15 м/с он становится не «слабо», а сильно турбулентным (неоднонаправленным).

Цифры СанПиНа - не безобидные, именно по ним ведется контроль объектов и экспертиза проектов органами санитарно-эпидемиологического надзора. Можно выпускать сколь угодно передовые стандарты, но пока существует СанПиН 2.1.3.1375603 дело с места не сдвинется.

Речь идет не просто об ошибках. Речь идет об общественной опасности таких документов.

В чем причина их появления?

  • Незнание европейских норм и основ физики?
  • Знание, но:
    • намеренное ухудшение условий в наших больницах?
    • лоббирование чьих-то интересов (например, производителей малоэффективных средств очистки воздуха)?

Как это увязать с защитой здоровья населения и правами потребителей?

Для нас, потребителей услуг здравоохранения, такая картина абсолютно неприемлема.

Тяжелыми и ранее неизлечимыми болезнями являлись лейкемия и другие заболевания крови.


Постель больного находится в зоне однонаправленного потока воздуха (класс 5 ИСО)

Сейчас решение есть, причем решение единственное: трансплантация костного мозга, затем подавление иммунитета организма на период адаптации (1-2 месяца). Чтобы человек, находясь в состоянии иммунодефицита, не погиб, его помещают в условия стерильного воздуха (под ламинарный поток).

В мире эта практика известна десятки лет. Пришла она и в Россию. В 2005 г. в Нижегородской областной детской клинической больнице были оборудованы две палаты интенсивной терапии для трансплантации костного мозга.

Палаты выполнены на уровне современной мировой практики. Это - единственное средство спасения обреченных детей.

А вот в ФГУЗ «Центр гигиены и эпидемиологии Нижегородской области» устроили безграмотную и амбициозную писчебумажную волокиту, задержав ввод объекта на полгода. Понимают ли эти служащие, что на их совести могут быть неспасенные детские жизни? Ответ нужно дать матерям, глядя им в глаза.

Разработка национального стандарта России

Анализ опыта зарубежных коллег позволил выделить несколько ключевых вопросов, некоторые из которых вызвали бурную дискуссию при обсуждении стандарта.

Группы помещений

Зарубежные стандарты в основном рассматривают операционные. Некоторые стандарты рассматривают изоляторы и другие помещения. Комплексная систематизация помещений всех назначений с ориентацией на классифика цию чистоты по ИСО отсутствует.

В принятом стандарте введены пять групп помещений в зависимости от риска инфицирования больного. Отдельно (группа 5) выделены изоляторы и гнойные операционные.

Классификация помещений выполнена с учетом факторов риска.

Критерий оценки чистоты воздуха

Что взять за основу оценки чистоты воздуха?:

  • частицы?
  • микроорганизмы?
  • то и другое?

Развитие норм в западных странах по этому критерию имеет свою логику.

На первых этапах чистота воздуха в больницах оценивалась только по концентрации микроорганизмов. Затем стал применяться и счет частиц. Еще в 1987 г. стандарт Франции NFX 906351 ввел контроль чистоты воздуха как по частицам, так и по микроорганизмам (см. выше) . Счет частиц с помощью лазерного счетчика частиц позволяет оперативно в режиме реального времени определять концентрацию частиц, в то время как для инкубации микроорганизмов на питательней среде требуется несколько дней.

Следующий вопрос: а что, собственно, проверяется при аттестации чистых помещений и систем вентиляции?

Проверяется качество их работы и правильность проект ных решений. Эти факторы однозначно оцениваются концентрацией частиц, от которой зависит число микроорганизмов.

Конечно, микробная обсемененность зависит от чистоты стен, оборудования, персонала и пр. Но эти факторы относятся к текущей работе, к эксплуатации, а не к оценке инженерных систем.

В связи с этим в Швейцарии (SWKI 9963) и Германии (VDI 2167) сделан логичный шаг вперед: установлен контроль воздуха только по частицам.

Учет микроорганизмов остается функцией эпидемиологической службы больницы и направлен на текущий контроль чистоты.

Эта мысль была заложена и в проект российского стандарта. На данном этапе от нее пришлось отказаться, ввиду категорически отрицательной позиции представителей санэпиднадзора.

Предельно допустимые нормы по частицам и микроорганизмам для различных групп помещений взяты по аналогам с западными стандартами и на основе собственного опыта.

Классификация по частицам соответствует ГОСТ ИСО 1464461.

Состояние чистого помещения

ГОСТ ИСО 1464461 различает три состояния чистых помещений.

В построенном состоянии проверяется выполнение ряда технических требований. Концентрация загрязнений как правило не нормируется.

В оснащенном состоянии помещение полностью укомплектовано оборудованием, но отсутствует персонал и не проводится технологический процесс (для больниц - отсутствует медперсонал и больной).

В эксплуатируемом состоянии в помещении выполняются все процессы, предусмотренные назначением помещения.

Правила производства лекарственных средств - GMP (ГОСТ Р 5224962004) предусматривают контроль загрязнений частицами как в оснащенном состоянии, так и в эксплуатируемом состоянии, а микрорганизмами - только в эксплуатируемом состоянии. В этом есть логика. Выделения загрязнений от оборудования и персонала при производстве лекарственных средств можно нормировать и обеспечивать соответствие нормам техническими и организационными мерами.

В лечебном учреждении есть ненормируемый элемент - больной. Его и медперсонал невозможно одеть в комбинезон для класса 5 ИСО и полностью закрыть всю поверхность тела. Из6за того, что источниками загрязнений в эксплуатируемом состоянии больничного помещения управлять нельзя, устанавливать нормы и проводить аттестацию помещений в эксплуатируемом состоянии бессмысленно, по крайней мере, по частицам.

Это понимали разработчики всех зарубежных стандартов. Нами также включен в ГОСТ контроль помещений только в оснащенном состоянии.

Размеры частиц

Изначально в чистых помещениях контролировалось загрязнение частицами с размерами, равными и большими 0,5 мкм (≥0,5 мкм). Затем, исходя из конкретных областей применения, стали появляться требования к концентрации частиц ≥0,1 мкм и ≥0,3 мкм (микроэлектроника), ≥0,5 мкм (производство лекарственных средств в дополнение к частицам ≥0,5 мкм) и пр.

Анализ показал, что в больницах нет смысла следовать шаблону «0,5 и 5,0 мкм», а достаточно ограничиваться контролем частиц ≥0,5 мкм.

Скорость однонаправленного потока


Рис. 1. Распределение модуля скорости

Выше уже отмечалось, что СанПиН 2.1.3.3175603, установив предельно допустимые значения скорости однонаправленного (ламинарного) потока 0,15 м/с, нарушил законы физики.

С другой стороны, вводить в медицине норму GMP 0,45 м/с ±20 % нельзя. Это приведет к дискомфорту, поверхостному обезвоживанию раны, может травмировать ее и пр. Поэтому для зон с однонаправленным потоком (операционные, палаты интенсивной терапии) установлена скорость от 0,24 до 0,3 м/с. Это грань допустимого, уходить от которой нельзя.

На рис. 1 показано распределение модуля скорости потока воздуха в зоне операционного стола для реальной операционной одной из больниц, полученное методом компьютерного моделирования.

Видно, что при малой скорости исходящего потока он быстро турбулируется и не выполняет полезной функции.

Размеры зоны с однонаправленным потоком воздуха

Из рис. 1 видно, что ламинарная зона с «глухой» плоскостью внутри бесполезна. А на рис. 2 и 3 показан принцип организации однонаправленного потока операционной Центрального института травматологии и ортопедии (ЦИТО). В этой операционной автор шесть лет назад оперировался по поводу полученной травмы. Известно, что однонаправленный поток воздуха сужается под углом примерно 15 % и то, что было в ЦИТО, смысла не имеет.

Правильная схема показана на рис. 4 (фирма «Klimed»).

Не случайно западные стандарты предусматривают размеры потолочного диффузора, создающего однонаправленный поток 3x3 м, без «глухих» поверхностей внутри. Исключения допускаются для менее ответственных операций.

Решения по вентиляции и кондиционированию

Эти решения соответствуют западным стандартам, экономичны и эффективны.

Сделаны некоторые изменения и упрощения без потери смысла. Например, в качестве финишных фильтров в операционных и палатах интенсивной терапии применены фильтры Н14 (вместо Н13), имеющие ту же стоимость, но значительно более эффективные.

Автономные устройства очистки воздуха

Автономные воздухоочистители являются эффективным средством обеспечения чистоты воздуха (кроме помещений групп 1 и 2). Они не требуют больших затрат, позволяют принимать гибкие решения и могут использоваться в массовом порядке, особенно в действующих больницах.

На рынке представлен широкий выбор воздухоочистителей. Не все они эффективны, некоторые из них вредны (выделяют озон). Основная опасность - неудачный вы6ор воздухоочистителя.

Лаборатория испытаний чистых помещений проводит экспериментальную оценку воздухоочистителей по показателям назначения. Опора на достоверные результаты - важное условие выполнения требований ГОСТ.

Методы испытаний

В руководстве SWKI 9963 и проекте стандарта VDI 2167 дана методика испытаний операционных с использованием манекенов и генераторов аэрозолей (). Применение этой методики в России вряд ли оправданно.

В условиях небольшой по территории страны одна специализированная лаборатория может обслужить все больницы. Для России это нереально.

С нашей точки зрения, и не нужно. С помощью манекенов отрабатываются типовые решения, которые закладываются в стандарт, а затем служат основой проектирования. Эти типовые решения отрабатываются в условиях института, что и сделано в г. Люцерн (Швейцария).

В массовой практике типовые решения применяются непосредственно. На готовом объекте проводятся испытания на соответствие стандартам и проекту.

ГОСТ Р 5253962006 дает систематизированную программу испытаний чистых помещений больниц по всем необходимым параметрам.

Болезнь легионеров - спутник старых инженерных систем

В 1976 г. в одном из отелей Филадельфии проходил конгресс Американского легиона. Из 4000 участников - 200 заболели, а 30 человек погибли. Причиной явился вид микроорганизмов, названный Legionella pneumophila в связи с упомянутым событием и насчитывающий более 40 разновидностей. Сама болезнь была названа болезнью легионеров.

Симптомы заболевания проявляются через 2-10 дней после инфицирования в виде головной боли, болей в конечностях и горле, сопровождаемых лихорадкой. Течение болезни сходно с обычной пневмонией, в связи с чем ее часто ошибочно диагностируют как пневмонию.

По официальной оценке в Германии с населением около 80 млн человек ежегодно страдают от болезни легионеров около 10 тыс. человек, но большинство случаев остаются нераскрытыми.

Инфекция передается воздушно6капельным путем. Возбудитель попадает в воздух помещения из старых систем вентиляции и кондиционирования, систем обеспечения горячей водой, душевых и пр. Legionella размножается особенно быстро в стоячей воде при температуре от 20 до 45 °С. При 50 °С происходит пастеризация, а при 70 °С - дезинфекция.

Опасными источниками являются старые большие здания (в т. ч. больницы и роддома), имеющие системы вентиляции и горячее водоснабжение.

Средства борьбы с болезнью - применение современных систем вентиляции с достаточно эффективными фильтрами и современных систем подготовки воды, включая циркуляцию воды, ультрафиолетовое облучение потока воды и пр.**

* Особую опасность представляют аспергиллы - широко распространенные плесневые грибы, обычно безвредные для людей. Но они представляют опасность для здоровья иммунодефицитных больных (например медикаментозная иммуносупрессия после трансплантации органов и тканей или больные с агранулоцитозом). Для таких больных ингаляция даже малых доз спор аспергилл может быть причиной тяжелых инфекционных заболеваний. На первом месте здесь находится легочная инфекция (пневмония). В больницах часто наблюдаются случаи инфицирования, связанные с проведением строительных работ или реконструкцией. Эти случаи вызваны выделением спор аспергилл из строительных материалов во время проведения строительных работ, что требует принятия специальных защитных мер (SWKI 99.3).

** Использованы материалы статьи M. Hartmann «Keep Legionella bugs at bay», Cleanroom Technology, March, 2006.



Похожие статьи