В каком процессе изменение энтропии положительно. Химическая термодинамика

Второе начало термодинамики имеет несколько формулировок. Формулировка Клаузиуса:невозможен процесс перехода теплоты от тела с более низкой температурой к телу с более высокой.

Формулировка Томсона: невозможен процесс, результатом которого было бы совершение работы за счет теплоты, взятой от одного какого-то тела. Эта формулировка накладывает ограничение на превращение внутренней энергии в механическую. Невозможно построить машину (вечный двигатель второго рода), которая совершала бы работу только за счет получения теплоты из окружающей среды.

Формулировка Больцмана: Энтропия - это показатель неупорядоченности системы. Чем выше энтропия, тем хаотичнее движение материальных частиц, составляющих систему. Давайте посмотрим, как она работает, на примере воды. В жидком состоянии вода представляет собой довольно неупорядоченную структуру, поскольку молекулы свободно перемещаются друг относительно друга, и пространственная ориентация у них может быть произвольной. Другое дело лед - в нем молекулы воды упорядочены, будучи включенными в кристаллическую решетку. Формулировка второго начала термодинамики Больцмана, условно говоря, гласит, что лед, растаяв и превратившись в воду (процесс, сопровождающийся снижением степени упорядоченности и повышением энтропии) сам по себе никогда из воды не возродится.Энтропия не может уменьшаться в замкнутых системах - то есть, в системах, не получающих внешней энергетической подпитки.

Третье начало термодинамики (теорема Нернста ) - физический принцип, определяющий поведение энтропии при приближении температуры к абсолютному нулю. Является одним из постулатов термодинамики, принимаемым на основе обобщения значительного количества экспериментальных данных.

Третье начало термодинамики может быть сформулировано так:

«Приращение энтропии при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система» .

где - любой термодинамический параметр.

Третье начало термодинамики относится только к равновесным состояниям.

Поскольку на основе второго начала термодинамики энтропию можно определить только с точностью до произвольной аддитивной постоянной (то есть, определяется не сама энтропия, а только её изменение):

третье начало термодинамики может быть использовано для точного определения энтропии. При этом энтропию равновесной системы при абсолютном нуле температуры считают равной нулю.

Энтропия идеальных газов

Для получения рассчетного выражения изменения энтропии идеальных газов воспользуемся первым законом термодинамики, в котором теплота определяется с использованием изменения энтальпии

Разность энтропий идеального газа в конкретных двух состояниях можно получить интегрированием выражения (4.59)

Для определения абсолюного значения энтропии идеального газа необходимо зафиксировать начало ее отсчета любой парой термических параметров состояния. Например, приняв s 0 =0 при Т 0 и Р 0 , воспользовавшись уравнением (4.60), получим

Выражение (4.62) свидетельствует о том, что энтропия идеального газа есть параметр состояния, поскольку ее можно определить через любую пару параметров состояния. В свою очередь, поскольку энтропия сама является параметром состояния, используя ее в паре с любым независимым параметром состояния, можно определить любой другой параметр состояния газа.

2.Стандартная энтропия веществ. Изменение энтропии при изменении агрегатного состояния веществ. Расчет изменения стандартной энтропии в химической реакции.
Энтропия (S) – термодинамическая функция состояния, которая служит мерой беспорядка (неупорядоченности) системы. Возможность протекания эндотермических процессов обусловлена изменением энтропии, ибо в изолированных системах энтропия самопроизвольно протекающего процесса увеличивается ΔS > 0 (второй закон термодинамики). Л. Больцман определил энтропию как термодинамическую вероятность состояния (беспорядок) системы W. Энтропия связана с термодинамической вероятностью соотношением: S = R · ln W
Размерность энтропии 1 моля вещества совпадает с размерностью газовой постоянной R и равна Дж∙моль–1∙K–1. Изменение энтропии *) в необратимых и обратимых процессах передается соотношениями ΔS > Q / T и ΔS = Q / T. Например, изменение энтропии плавления равно теплоте (энтальпии) плавления ΔSпл = ΔHпл/Tпл. Для химической реакции изменение энтропии аналогично изменению энтальпии ​

*) термин энтропия был введен Клаузиусом (1865 г.) через отношение Q / T (приведенное тепло).

Здесь ΔS° соответствует энтропии стандартного состояния. Стандартные энтропии простых веществ не равны нулю. В отличие от других термодинамических функций энтропия идеально кристаллического тела при абсолютном нуле равна нулю (постулат Планка), поскольку W = 1.

Энтропия вещества или системы тел при определенной температуре является абсолютной величиной.

Энтропия зависит от:
-агрегатного состояния вещества. Энтропия увеличивается при переходе от твердого к жидкому и особенно к газообразному состоянию (вода, лед, пар).
-изотопного состава (H2O и D2O).
-молекулярной массы однотипных соединений (CH4, C2H6, н-C4H10).
-строения молекулы (н-C4H10, изо-C4H10).
-кристаллической структуры (аллотропии) – алмаз, графит.

Изменение энтропии в процессе этого (твердое тело-жидкость) фазового перехода можно найти просто, если считать процесс равновесным.

Это вполне допустимое приближение, если считать, что разность температур между системой и тем объектом, который поставляет системе тепло, не слишком велика, намного меньше температуры плавления. Тогда можно использовать термодинамический смысл энтропии: с точки зрения термодинамики энтропия – это такая функция состояния системы, изменение которой dS в элементарном равновесном процессе равно отношению порции тепла δQ, которое система получает в этом процессе, к температуре системы Т:

Так как температура системы в данном фазовом переходе не меняется и равна температуре плавления, то подынтегральное выражение –это величина, которая в ходе процесса не меняется, поэтому она от массы m вещества не зависит. Тогда

Из этой формулы следует, что при плавлении энтропия возрастает, а при кристаллизации уменьшается. Физический смысл этого результата достаточно ясен: фазовая область молекулы в твердом теле гораздо меньше, чем в жидкости, так как в твердом теле каждой молекуле доступна только малая область пространства между соседними узлами кристаллической решетки, а в жидкости молекулы занимают всю область пространства. Поэтому при равной температуре энтропия твердого тела меньше энтропии жидкости. Это означает, что твердое тело представляет собой более упорядоченную, и менее хаотичную систему, чем жидкость.
Применение энтропии в этом (жидкость-газ) процессе можно найти просто, считая процесс равновесным. И опять это вполне допустимое приближение, при условии, что разность температур между системой и «поставщиком» тепла невелика, т.е. намного меньше температуры кипения. Тогда

Из формулы следует, что при испарении энтропия возрастает, а при конденсации уменьшается.
Физический смысл этого результата состоит в различии фазовой области молекулы в жидкости и газе. Хотя в жидкости и газе каждой молекуле доступна вся область пространства, занятая системой, но сама эта область для жидкости существенно меньше, чем для газа. В жидкости силы притяжения между молекулами удерживают их на определенном расстоянии друг от друга. Поэтому каждая молекула хотя и имеет возможность свободно мигрировать по области пространства, занятой жидкостью, но не имеет возможности «оторваться от коллектива» остальных молекул: стоит ей оторваться от одной молекулы, как тут же притягивается другая. Поэтому объем жидкости зависит от её количества и никак не связан с объемом сосуда.

Молекулы газа ведут себя иначе. У них гораздо больше свободы, среднее расстояние между ними таково, что силы притяжения очень малы, и молекулы «замечают друг друга» лишь при столкновениях. В результате газ всегда занимает весь объем сосуда.

Поэтому при равных температурах фазовая область молекул газа значительно больше фазовой области молекул жидкости, и энтропия газа больше энтропии жидкости. Газ, по сравнению с жидкостью, гораздо менее упорядоченная, более хаотичная система.

Изменение стандартной молярной энтропии в химической реакции определяется уравнением:

Следует обратить внимание на то, что изменение энтропии в рассмотренном примере оказывается отрицательным. Этого можно было ожидать, если учесть, что, согласно уравнению рассматриваемой реакции, суммарное количество газообразных реагентов равно 1,5 моль, а суммарное количество газообразных продуктов-только 1 моль. Таким образом, в результате реакции происходит уменьшение общего количества газов. Вместе с тем нам известно, что реакции горения принадлежат к числу экзотермических реакций. Следовательно, результатом их протекания является рассеяние энергии, а это заставляет ожидать возрастания энтропии, а не ее уменьшения. Далее, следует учесть, что горение газообразного водорода при 25°С, вызванное первоначальным инициированием, протекает затем самопроизвольно и с большой интенсивностью. Но разве не должно в таком случае изменение энтропии в данной реакции быть положительным, как того требует второй закон термодинамики? Оказывается - нет или по крайней мере не обязательно должно. Второй закон термодинамики требует, чтобы в результате самопроизвольного процесса возрастала суммарная энтропия системы и ее окружения. Вычисленное выше изменение энтропии характеризует только рассматриваемую химическую систему, состоящую из реагентов и продуктов, которые принимают участие в горении газообразного водорода при 25°С.

Второй закон термодинамики устанавливает критерии необратимости термодинамических процессов. Известно много формулировок второго закона, которые эквивалентны друг другу. Мы приведем здесь только одну формулировку, связанную с энтропией.

Существует функция состояния - энтропия S , которая обладает следующим свойством: , (4.1) где знак равенства относится к обратимым процессам, а знак больше - к необратимым.

Для изолированных систем второй закон утверждает: dS і 0, (4.2) т.е. энтропия изолированных систем в необратимых процессах может только возрастать, а в состоянии термодинамического равновесия она достигает максимума (dS = 0,
d 2 S < 0).

Неравенство (4.1) называют неравенством Клаузиуса . Поскольку энтропия - функция состояния, ее изменение в любом циклическом процессе равно 0, поэтому для циклических процессов неравенство Клаузиуса имеет вид:

где знак равенства ставится, если весь цикл полностью обратим.

Энтропию можно определить с помощью двух эквивалентных подходов - статистического и термодинамического. Статистическое определение основано на идее о том, что необратимые процессы в термодинамике вызваны переходом в более вероятное состояние, поэтому энтропию можно связать с вероятностью:

где k = 1.38 10 -23 Дж/К - постоянная Больцмана (k = R / N A), W - так называемая термодинамическая вероятность, т.е. число микросостояний, которые соответствуют данному макросостоянию системы (см. гл. 10). Формулу (4.4) называют формулой Больцмана .

С точки зрения строгой статистической термодинамики энтропию вводят следующим образом:

где G (E ) - фазовый объем, занятый микроканоническим ансамблем с энергией E .

Термодинамическое определение энтропии основано на рассмотрении обратимых процессов:

Это определение позволяет представить элементарную теплоту в такой же форме, как и различные виды работы:

Q обр = TdS , (4.7)

где температура играет роль обобщенной силы, а энтропия - обобщенной (тепловой) координаты.

Расчет изменения энтропии для различных процессов

Термодинамические расчеты изменения энтропии основаны на определении (4.6) и на свойствах частных производных энтропии по термодинамическим параметрам:

(4.8)

Последние два тождества представляют собой соотношения Максвелла (вывод см. в гл. 5).

1) Нагревание или охлаждение при постоянном давлении .

Количество теплоты, необходимое для изменения температуры системы, выражают с помощью теплоемкости: Q обр = C p dT .

(4.9)

Если теплоемкость не зависит от температуры в интервале от T 1 до T 2 , то уравнение (4.8) можно проинтегрировать:

Если изменение температуры происходит при постоянном объеме, то в формулах (4.9) и (4.10) C p надо заменить на C V .

2) Изотермическое расширение или сжатие .

Для расчета энтропии в этом случае надо знать уравнение состояния системы. Расчет основан на использовании соотношения Максвелла:

(4.11)

В частности, для изотермического расширения идеального газа (p = nRT / V )

Этот же результат можно получить, если использовать выражение для теплоты изотермического обратимого расширения идеального газа: Q обр = nRT ln(V 2 /V 1) .

3) Фазовые переходы .

При обратимом фазовом переходе температура остается постоянной, а теплота фазового перехода при постоянном давлении равна H фп, поэтому изменение энтропии равно:

(4.13)

При плавлении и кипении теплота поглощается, поэтому энтропия в этих процессах возрастает: S тв < S ж < S г. При этом энтропия окружающей среды уменьшается на величину S ф.п. , поэтому изменение энтропии Вселенной равно 0, как и полагается для обратимого процесса в изолированной системе.

4) Смешение идеальных газов при постоянных температуре и давлении .

Если n 1 молей одного газа, занимающего объем V 1 , смешиваются с n 2 молями другого газа, занимающего объем V 2 , то общий объем будет равен V 1 + V 2 , причем газы расширяются независимо друг от друга и общее изменение энтропии равно сумме изменений энтропии каждого газа:

где x i - мольная доля i -го газа в полученной газовой смеси. Изменение энтропии (4.14) всегда положительно, т.к. все ln x i < 0, поэтому идеальные газы всегда смешиваются необратимо.

Если при тех же условиях смешиваются две порции одного и того же газа, то уравнение (4.14) уже неприменимо. Никаких изменений в системе при смешивании не происходит, и S = 0. Тем не менее, формула (4.14) не содержит никаких индивидуальных параметров газов, поэтому, казалось бы, должна быть применима и к смешению одинаковых газов. Это противоречие называют парадоксом Гиббса .

Абсолютная энтропия

В отличие от многих других термодинамических функций, энтропия имеет точку отсчета, которая задается постулатом Планка (третьим законом термодинамики) :

При абсолютном нуле T = 0 К все идеальные кристаллы
имеют одинаковую энтропию, равную нулю.

При стремлении температуры к абсолютному нулю не только энтропия стремится к 0, но и ее производные по всем термодинамическим параметрам:

(x = p , V ). (4.15)

Это означает, что вблизи абсолютного нуля все термодинамические процессы протекают без изменения энтропии. Это утверждение называют тепловой теоремой Нернста .

Постулат Планка позволяет ввести понятие абсолютной энтропии вещества, т.е. энтропии, отсчитанной от нулевого значения при T = 0. Для расчета абсолютной энтропии веществ в стандартном состоянии надо знать зависимости теплоемкости C p от температуры для каждой из фаз, а также температуры и энтальпии фазовых переходов. Так, например, абсолютная энтропия газообразного вещества в стандартном состоянии при температуре T складывается из следующих составляющих:

В термодинамических таблицах обычно приводят значения абсолютной энтропии в стандартном состоянии при температуре 298 К.

Значения абсолютной энтропии веществ используют для расчета изменения энтропии в химических реакциях:

. (4.17)

ПРИМЕРЫ

Пример 4-1. Определите зависимость энтропии от объема для термодинамической системы, которая описывается уравнением состояния (для одного моля)

Решение .

Интегрируя это равенство, находим зависимость энтропии от объема:

где const зависит от температуры.

Пример 4-2. Рассчитайте изменение энтропии при нагревании 0.7 моль моноклинной серы от 25 до 200 о С при давлении 1 атм. Мольная теплоемкость серы равна:

C p (S тв) = 23.64 Дж/(моль. К),
C p (S ж) = 35.73 + 1.17 . 10 -3 . T Дж/(моль. К).

Температура плавления моноклинной серы 119 о С, удельная теплота плавления 45.2 Дж/г.

Решение . Общее изменение энтропии складывается из трех составляющих: 1) нагревание твердой серы от 25 до 119 о С, 2) плавление, 3) нагревание жидкой серы от 119 до 200 о С.

4.54 Дж/К.

2.58 Дж/К.

S = S 1 + S 2 + S 3 = 11.88 Дж/К.

Ответ. 11.88 Дж/К.

Пример 4-3. Найдите изменение энтропии газа и окружающей среды, если n молей идеального газа расширяются изотермически от объема V 1 до объема V p .

Решение . а) Изменение энтропии газа при обратимом изотермическом расширении можно найти с помощью термодинамического определения энтропии с расчетом теплоты расширения по первому закону:

.

Так как расширение обратимое, то общее изменение энтропии Вселенной равно 0, поэтому изменение энтропии окружающей среды равно изменению энтропии газа с обратным знаком:

.

б) Энтропия - функция состояния, поэтому изменение энтропии системы не зависит от того, как совершался процесс - обратимо или необратимо. Изменение энтропии газа при необратимом расширении против внешнего давления будет таким же, как и при обратимом расширении. Другое дело - энтропия окружающей среды, которую можно найти, рассчитав с помощью первого закона теплоту, переданную системе:

.

В этом выводе мы использовали тот факт, что U = 0 (температура постоянна). Работа, совершаемая системой против постоянного внешнего давления равна: A = p (V 2 -V 1), а теплота, принятая окружающей средой, равна работе, совершенной системой, с обратным знаком.

Общее изменение энтропии газа и окружающей среды больше 0:

,

как и полагается для необратимого процесса.

Пример 4-4. Рассчитайте изменение энтропии 1000 г воды в результате ее замерзания при -5 О С. Теплота плавления льда при 0 о С равна 6008 Дж/моль. Теплоемкости льда и воды равны 34.7 и 75.3 Дж/(моль. К), соответственно. Объясните, почему энтропия при замерзании уменьшается, хотя процесс - самопроизвольный.

Решение . Необратимый процесс замерзания воды при температуре -5 О С можно представить в виде последовательности обратимых процессов: 1) нагревание воды от
-5 О С до температуры замерзания (0 О С); 2) замерзание воды при 0 О С; 3) охлаждение льда от 0 до -5 О С:

Изменение энтропии в первом и третьем процессах (при изменении температуры) рассчитывается по формуле (4.9):

77.3 Дж/К.

-35.6 Дж/К.

Изменение энтропии во втором процессе рассчитывается как для обычного фазового перехода (4.13). Необходимо только иметь в виду, что теплота при замерзании выделяется:

-1223 Дж/К.

Т.к. энтропия - функция состояния, общее изменение энтропии равно сумме по этим трем процессам:

S = S 1 + S 2 + S 3 = -1181 Дж/К.

Энтропия при замерзании убывает, хотя процесс самопроизвольный. Это связано с тем, что в окружающую среду выделяется теплота и энтропия окружающей среды увеличивается, причем это увеличение больше, чем 1181 Дж/К, поэтому энтропия Вселенной при замерзании воды возрастает, как и полагается в необратимом процессе.

Ответ. -1181 Дж/К.

ЗАДАЧИ

4-1. Приведите пример термодинамического процесса, который может быть проведен как обратимо, так и необратимо. Рассчитайте изменение энтропии системы и окружающей среды в обоих случаях.

4-2. Проверьте неравенство Клаузиуса для циклического процесса, представленного в задаче 2.14.

4-3. Рассчитайте мольную энтропию неона при 500 К, если при 298 К и том же объеме энтропия неона равна 146.2 Дж/(моль. К).

4-4. Рассчитайте изменение энтропии при нагревании 11.2 л азота от 0 до 50 о С и одновременном уменьшении давления от 1 атм до 0.01 атм.

4-5. Один моль гелия при 100 о С и 1 атм смешивают с 0.5 моль неона при 0 о С и 1 атм. Определите изменение энтропии, если конечное давление равно 1 атм.

4-6. Рассчитайте изменение энтропии при образовании 1 м 3 воздуха из азота и кислорода (20 об.%) при температуре 25 о С и давлении 1 атм.

4-7. Три моля идеального одноатомного газа (C V = 3.0 кал/(моль. К)), находящегося при T 1 = 350 K и P 1 = 5.0 атм, обратимо и адиабатически расширяются до давления P 2 = 1.0 атм. Рассчитайте конечные температуру и объем, а также совершенную работу и изменение внутренней энергии, энтальпии и энтропии в этом процессе.

4-8. Рассчитайте изменение энтропии при нагревании 0.4 моль хлорида натрия от 20 до 850 о С. Мольная теплоемкость хлорида натрия равна:

C p (NaCl тв) = 45.94 + 16.32 . 10 -3 . T Дж/(моль. К),
C p (NaCl ж) = 66.53 Дж/(моль. К).

Температура плавления хлорида натрия 800 о С, теплота плавления 31.0 кДж/моль.

4-9. Рассчитайте изменение энтропии при смешении 5 кг воды при 80 о С с 10 кг воды при 20 о С. Удельную теплоемкость воды принять равной: C p (H 2 O) = 4.184 Дж/(г. К).

4-10. Рассчитайте изменение энтропии при добавлении 200 г льда, находящегося при температуре 0 о С, к 200 г воды (90 о С) в изолированном сосуде. Теплота плавления льда равна 6.0 кДж/моль.

4-11. Для некоторого твердого тела найдена зависимость коэффициента расширения от давления в интервале давлений от p 1 до p 2:

.

Насколько уменьшится энтропия этого тела при сжатии от p 1 до p 2 ?

4-12. Найдите изменение энтропии газа и окружающей среды, если n молей идеального газа расширяются изотермически от давления p 1 до давления p 2: а) обратимо; б) против внешнего давления p < p 2 .

4-13. Запишите выражение для расчета абсолютной энтропии одного моля воды при температуре 300 0 С и давлении 2 атм.

4-14. Нарисуйте график зависимости стандартной энтропии воды от температуры в интервале от 0 до 400 К.

4-15. Запишите энтропию одного моля идеального газа как функцию температуры и давления (теплоемкость считать постоянной).

4-16. Определите зависимость энтропии от объема для термодинамической системы, которая описывается уравнением состояния (для одного моля):

4-17. Определите зависимость энтропии от объема для термодинамической системы, которая описывается уравнением состояния (для одного моля):

4-18. Один моль газа описывается уравнением состояния

где f (V ) - некоторая функция, которая не зависит от температуры. Рассчитайте изменение энтропии газа при его необратимом изотермическом расширении от объема V 1 до объема V 2 .

4-19. Рассчитайте изменение энтропии 1000 г метанола в результате его замерзания при -105 О С. Теплота плавления твердого метанола при -98 о С (т.пл.) равна 3160 Дж/моль. Теплоемкости твердого и жидкого метанола равны 55.6 и 81.6 Дж/(моль. К), соответственно. Объясните, почему энтропия при замерзании уменьшается, хотя процесс - самопроизвольный.

4-20. Теплоемкость некоторого вещества в интервале температур от T 1 до T 2 изменяется следующим образом:

Постройте график зависимости энтропии вещества от температуры в этом интервале температур.

4-21. Пользуясь справочными данными, приведите пример самопроизвольной химической реакции, для которой стандартное изменение энтропии меньше 0.

4-22. Пользуясь справочными данными, рассчитайте стандартное изменение энтропии в реакции H 2(г) + ЅO 2(г) = H 2 O (г) а) при 25 о С; б) при 300 о С.

Этот пост является вольным переводом ответа, который Mark Eichenlaub дал на вопрос What"s an intuitive way to understand entropy? , заданный на сайте Quora

Энтропия. Пожалуй, это одно из самых сложных для понимания понятий, с которым вы можете встретиться в курсе физики, по крайней мере если говорить о физике классической. Мало кто из выпускников физических факультетов может объяснить, что это такое. Большинство проблем с пониманием энтропии, однако, можно снять, если понять одну вещь. Энтропия качественно отличается от других термодинамических величин: таких как давление, объём или внутренняя энергия, потому что является свойством не системы, а того, как мы эту систему рассматриваем. К сожалению в курсе термодинамики её обычно рассматривают наравне с другими термодинамическими функциями, что усугубляет непонимание.

Так что же такое энтропия?

Если в двух словах, то
Энтропия - это то, как много информации вам не известно о системе

Например, если вы спросите меня, где я живу, и я отвечу: в России, то моя энтропия для вас будет высока, всё-таки Россия большая страна. Если же я назову вам свой почтовый индекс: 603081, то моя энтропия для вас понизится, поскольку вы получите больше информации.


Почтовый индекс содержит шесть цифр, то есть я дал вам шесть символов информации. Энтропия вашего знания обо мне понизилась приблизительно на 6 символов. (На самом деле, не совсем, потому что некоторые индексы отвечают большему количеству адресов, а некоторые - меньшему, но мы этим пренебрежём).


Или рассмотрим другой пример. Пусть у меня есть десять игральных костей (шестигранных), и выбросив их, я вам сообщаю, что их сумма равна 30. Зная только это, вы не можете сказать, какие конкретно цифры на каждой из костей - вам не хватает информации. Эти конкретные цифры на костях в статистической физике называют микросостояниями, а общую сумму (30 в нашем случае) - макросостоянием. Существует 2 930 455 микросостояний, которые отвечают сумме равной 30. Так что энтропия этого макросостояния равна приблизительно 6,5 символам (половинка появляется из-за того, что при нумерации микросостояний по порядку в седьмом разряде вам доступны не все цифры, а только 0, 1 и 2).

А что если бы я вам сказал, что сумма равна 59? Для этого макросостояния существует всего 10 возможных микросостояний, так что его энтропия равна всего лишь одному символу. Как видите, разные макросостояния имеют разные энтропии.

Пусть теперь я вам скажу, что сумма первых пяти костей 13, а сумма остальных пяти - 17, так что общая сумма снова 30. У вас, однако, в этом случае имеется больше информации, поэтому энтропия системы для вас должна упасть. И, действительно, 13 на пяти костях можно получить 420-ю разными способами, а 17 - 780-ю, то есть полное число микросостояний составит всего лишь 420х780 = 327 600. Энтропия такой системы приблизительно на один символ меньше, чем в первом примере.

Мы измеряем энтропию как количество символов, необходимых для записи числа микросостояний. Математически это количество определяется как логарифм, поэтому обозначив энтропию символом S, а число микросостояний символом Ω, мы можем записать:

Это есть ничто иное как формула Больцмана (с точностью до множителя k, который зависит от выбранных единиц измерения) для энтропии. Если макросостоянию отвечают одно микросостояние, его энтропия по этой формуле равна нулю. Если у вас есть две системы, то полная энтропия равна сумме энтропий каждой из этих систем, потому что log(AB) = log A + log B.

Из приведённого выше описания становится понятно, почему не следует думать об энтропии как о собственном свойстве системы. У системы есть опеделённые внутренняя энергия, импульс, заряд, но у неё нет определённой энтропии: энтропия десяти костей зависит от того, известна вам только их полная сумма, или также и частные суммы пятёрок костей.

Другими словами, энтропия - это то, как мы описываем систему. И это делает её сильно отличной от других величин, с которыми принято работать в физике.

Физический пример: газ под поршнем

Классической системой, которую рассматривают в физике, является газ, находящийся в сосуде под поршнем. Микросостояние газа - это положение и импульс (скорость) каждой его молекулы. Это эквивалентно тому, что вы знаете значение, выпавшее на каждой кости в рассмотренном раньше примере. Макросостояние газа описывается такими величинами как давление, плотность, объём, химический состав. Это как сумма значений, выпавших на костях.

Величины, описывающие макросостояние, могут быть связаны друг с другом через так называемое «уравнение состояния». Именно наличие этой связи позволяет, не зная микросостояний, предсказывать, что будет с нашей системой, если начать её нагревать или перемещать поршень. Для идеального газа уравнение состояния имеет простой вид:

Хотя вы, скорее всего, лучше знакомы с уравнением Клапейрона - Менделеева pV = νRT - это то же самое уравнение, только с добавлением пары констант, чтобы вас запутать. Чем больше микросостояний отвечают данному макросостоянию, то есть чем больше частиц входят в состав нашей системы, тем лучше уравнение состояния её описывают. Для газа характерные значения числа частиц равны числу Авогадро, то есть составляют порядка 10 23 .

Величины типа давления, температуры и плотности называются усреднёнными, поскольку являются усреднённым проявлением постоянно сменяющих друг друга микросостояний, отвечающих данному макросостоянию (или, вернее, близким к нему макросостояниям). Чтобы узнать в каком микросостоянии находится система, нам надо очень много информации - мы должны знать положение и скорость каждой частицы. Количество этой информации и называется энтропией.

Как меняется энтропия с изменением макросостояния? Это легко понять. Например, если мы немного нагреем газ, то скорость его частиц возрастёт, следовательно, возрастёт и степень нашего незнания об этой скорости, то есть энтропия вырастет. Или, если мы увеличим объём газа, отведя поршень, увеличится степень нашего незнания положения частиц, и энтропия также вырастет.

Твёрдые тела и потенциальная энергия

Если мы рассмотрим вместо газа какое-нибудь твёрдое тело, особенно с упорядоченной структурой, как в кристаллах, например, кусок металла, то его энтропия будет невелика. Почему? Потому что зная положение одного атома в такой структуре, вы знаете и положение всех остальных (они же выстроены в правильную кристаллическую структуру), скорости же атомов невелики, потому что они не могут улететь далеко от своего положения и лишь немного колеблются вокруг положения равновесия.

Если кусок металла находится в поле тяготения (например, поднят над поверхностью Земли), то потенциальная энергия каждого атома в металле приблизительно равна потенциальной энергии других атомов, и связанная с этой энергией энтропия низка. Это отличает потенциальную энергию от кинетической, которая для теплового движения может сильно меняться от атома к атому.

Если кусок металла, поднятый на некоторую высоту, отпустить, то его потенциальная энергия будет переходить в кинетическую энергию, но энтропия возрастать практически не будет, потому что все атомы будут двигаться приблизительно одинаково. Но когда кусок упадёт на землю, во время удара атомы металла получат случайное направление движения, и энтропия резко увеличится. Кинетическая энергия направленного движения перейдёт в кинетическую энергию теплового движения. Перед ударом мы приблизительно знали, как движется каждый атом, теперь мы эту информацию потеряли.

Понимаем второй закон термодинамики

Второй закон термодинамики утверждает, что энтропия (замкнутой системы) никогда не уменьшается. Мы теперь можем понять, почему: потому что невозможно внезапно получить больше информации о микросостояниях. Как только вы потеряли некую информацию о микросостоянии (как во время удара куска металла об землю), вы не можете вернуть её назад.


Давайте вернёмся обратно к игральным костям. Вспомним, что макросостояние с суммой 59 имеет очень низкую энтропию, но и получить его не так-то просто. Если бросать кости раз за разом, то будут выпадать те суммы (макросостояния), которым отвечает большее количество микросостояний, то есть будут реализовываться макросостояния с большой энтропией. Самой большой энтропией обладает сумма 35, и именно она и будет выпадать чаще других. Именно об этом и говорит второй закон термодинамики. Любое случайное (неконтролируемое) взаимодействие приводит к росту энтропии, по крайней мере до тех пор, пока она не достигнет своего максимума.

Перемешивание газов

И ещё один пример, чтобы закрепить сказанное. Пусть у нас имеется контейнер, в котором находятся два газа, разделённых расположенной посередине контейнера перегородкой. Назовём молекулы одного газа синими, а другого - красными.

Если открыть перегородку, газы начнут перемешиваться, потому что число микросостояний, в которых газы перемешаны, намного больше, чем микросостояний, в которых они разделены, и все микросостояния, естественно, равновероятны. Когда мы открыли перегородку, для каждой молекулы мы потеряли информацию о том, с какой стороны перегородки она теперь находится. Если молекул было N, то утеряно N бит информации (биты и символы, в данном контексте, это, фактически, одно и тоже, и отличаются только неким постоянным множителем).

Разбираемся с демоном Максвелла

Ну и напоследок рассмотрим решение в рамках нашей парадигмы знаменитого парадокса демона Максвелла. Напомню, что он заключается в следующем. Пусть у нас есть перемешанные газы из синих и красных молекул. Поставим обратно перегородку, проделав в ней небольшое отверстие, в которое посадим воображаемого демона. Его задача - пропускать слева направо только красных, и справа налево только синих. Очевидно, что через некоторое время газы снова будут разделены: все синие молекулы окажутся слева от перегородки, а все красные - справа.


Получается, что наш демон понизил энтропию системы. С демоном ничего не случилось, то есть его энтропия не изменилась, а система у нас была закрытой. Получается, что мы нашли пример, когда второй закон термодинамики не выполняется! Как такое оказалось возможно?

Решается этот парадокс, однако, очень просто. Ведь энтропия - это свойство не системы, а нашего знания об этой системе. Мы с вами знаем о системе мало, поэтому нам и кажется, что её энтропия уменьшается. Но наш демон знает о системе очень много - чтобы разделять молекулы, он должен знать положение и скорость каждой из них (по крайней мере на подлёте к нему). Если он знает о молекулах всё, то с его точки зрения энтропия системы, фактически, равна нулю - у него просто нет недостающей информации о ней. В этом случае энтропия системы как была равна нулю, так и осталась равной нулю, и второй закон термодинамики нигде не нарушился.

Но даже если демон не знает всей информации о микросостоянии системы, ему, как минимум, надо знать цвет подлетающей к нему молекулы, чтобы понять, пропускать её или нет. И если общее число молекул равно N, то демон должен обладать N бит информации о системе - но именно столько информации мы и потеряли, когда открыли перегородку. То есть количество потерянной информации в точности равно количеству информации, которую необходимо получить о системе, чтобы вернуть её в исходное состояние - и это звучит вполне логично, и опять же не противоречит второму закону термодинамики.

Обычно любой физический процесс, при котором система постепенно переходит из одного состояния в другое, протекает по-разному, поэтому провести это явление в обратное состояние практически невозможно. Для этого необходимо использовать показатели промежуточного времени в окружающих определенную среду телах. Это напрямую связано с тем, что в процессе часть энергетического потенциала рассеивается путем постоянного трения и излучения.

Рисунок 1. Термодинамическая энтропия. Автор24 - интернет-биржа студенческих работ

Согласно законам термодинамики, практически все явления в природе необратимы. В любом физическом процессе часть энергии постепенно теряется. Для характеристики и описания рассеяния энергии вводится определение энтропии, объясняющее тепловое состояние концепции и определяющее вероятность возникновения нового состояния тела. Чем более вероятно это состояния, тем больше показатель энтропии. Все естественные ситуации в обычной жизни сопровождаются ростом данного элемента, который остается постоянным только в случае идеализированного процесса, наблюдаемого в замкнутой системе.

Определение 1

Энтропия – это универсальная функция состояния конкретной системы, незначительное изменение которой в обратимой ситуации равно отношению ничтожно малого количества введенной в данный процесс теплоты при соответствующей начальному состоянию температуре.

Поскольку энтропия есть основная функция состояния физического тела, то свойством интеграла выступает его самостоятельность и независимость от формы контура, по которому он вычисляется таким образом:

  • в любом обратимом физическом явлении изменения энтропии приравниваются нулю;
  • в термодинамике доказывается, что системы необратимой цикл возрастает с равными промежуточными параметрами;
  • энтропия замкнутой системы может либо возрастать, либо оставаться в стабильном состоянии.

Следовательно, указанная термодинамическая функция обладает особенностями аддитивности: энтропия каждой системы равна сумме энтропий материальных тел, входящих в систему: $S = S_1 + S_2 + S_3 + …$ Существенным отличием теплового движения элементарных частиц от других форм движения является их беспорядочность и хаотичность. Поэтому для описания теплового движения изначально нужно ввести количественный уровень молекулярной нестабильности. Если рассмотреть данное макроскопическое состояния вещества с любыми средними значениями параметров, то оно представляет собой ни что иное, как систематическая смена близко расположенных микросостояний, которые отличаются друг от друга распределением молекул в различных частях объема.

Статистическое определение энтропии: принцип Больцмана

Рисунок 2. Статистический смысл энтропии. Автор24 - интернет-биржа студенческих работ

В 1877 году ученый Людвиг Больцман обнаружил, что энтропия концепции может относиться к числу вероятных «микросостояний», которые согласуются с основными термодинамическими свойствами. Хорошим примером такого явления выступает идеальный газ в сосуде. Микросостояние в указанном элементе определено как импульсы и позиции (моменты движения) каждого составляющего систему атома и молекула.

Комплексность предъявляет к ученым требования исследовать только те микросостояния, для которых:

  • месторасположения всех движущихся частей расположены в пределах сосуда;
  • для получения общего энергетического потенциала кинетические энергии газа в итоге суммируются;
  • затем тепловая константа определяет количество микросостояний, которые возможны в имеющемся состоянии (статистический вес состояния).

Такой постулат, известный в науке как принцип Больцмана, возможно охарактеризовать в виде начала статистической механики, описывающего подробно главные термодинамические системы и использующего для своих целей принципы классической и квантовой физики.

Замечание 1

Закон Больцмана связывает в термодинамике все микроскопические свойства системы с одним из её динамических свойств.

Согласно определению исследователя, энтропия является просто дополнительной функцией состояния, параметры которой могут быть только натуральным числом.

Понимание энтропии как меры беспорядка

Существует мнение, что энтропию возможно рассматривать, как меру беспорядка в определенной системе. Иногда, с научной точки зрения, это может быть оправдано, так как зачастую ученые в первую очередь думают об «упорядоченных» концепциях как элементах, имеющих практически нулевую возможность дальнейшего конфигурирования, а как о «нестабильных» системах, обладающих множеством вероятных состояний. Собственно, это просто переформулированное трактовка энтропии как количества микросостояний, действующих в определенной среде.

Подобное определение беспорядка и хаотичности термодинамической системы как основного параметра возможностей конфигурирования концепции практически дословно соответствует формулировке энтропии в виде микросостояний.

Проблемы начинаются в двух конкретных случаях:

  • когда физики начинают смешивать разные понимания беспорядка, в результате чего энтропия становится мерой беспорядка в целом;
  • когда определение энтропии используется для систем, изначально не являющихся термодинамическими.

В вышеуказанных случаях применение понятия энтропии в термодинамике абсолютно неправомерно.

Значение энтропии для живых организмов

Все трансформации и превращения внутренней энергии описываются в физике законами термодинамики, которые при адекватных физических моделях и грамотно сформулированных физических ограничениях вполне применимы и для жизненных нестабильных процессов. Уменьшение показателя энтропия (появление отрицательной энергии по Шрёдингеру) в живом организме при тесном взаимодействии его с окружающей средой автоматически приводит к росту свободного энергетического потенциала.

Замечание 2

Если система «уклоняется» от постоянного равновесия, то она непременно должна в дальнейшем компенсировать увеличение энтропии другой энергией, с точки зрения науки - свободной энергией.

Таким образом, живая природа пытается избегать роста энтропии, повышая ее значимость в окружающей среде при общении с ней живого организма. Энтропия представляет собой «омертвленную» энергия, которую невозможно превратить в стабильную работу. По законам классической термодинамики в изолированных, хаотичных системах теплота полностью рассеивается, следовательно, процесс идет от порядка к хаосу.

Для живых микроорганизмов, как главных открытых систем, с научной точки зрения акт возникновения живого будет характеризоваться спонтанной трансформацией тепловой энергии необратимых функций в механическую целенаправленную работу создания высокоразвитой системы. Все это возможно осуществить посредством наличия свободной энергии. Следовательно, термодинамическая неравновесность существующих живых систем свидетельствует об их обязательной упорядоченности, так как полноценное равновесие соответствует хаосу и это в итоге приводит к смерти живого организма, когда его энтропия находится на максимальном уровне.

В целом, энтропия выступает как мера неопределенности и нестабильности, усреднения поведения физических объектов, установления правильного состояния и даже определенного единообразия. Жизнедеятельность биологических систем доказывает, что они не хотят подчиняться закону термодинамики для изолированной среды.



Похожие статьи