Сложение двух цилиндрических когерентных волн. Ширина интерференционной полосы

ВВЕДЕНИЕ

Оптический компенсатор в виде пластинки четверть длины волны- это есть кристаллическая пластинка, которая вносит дополнительную разность фаз в между проходящими через нее лучами поляризованными во взаимно перпендикулярных плоскостях, применяется для анализа эллиптически поляризованного света и предназначен для использования его в учебном процессе высших учебных заведений в лабораторном практикуме по общей физике при изучении тем: распространение света через анизотропные среды, искусственная анизотропия при механических напряжениях, отражения света от металлов.

Пластинку в четверть длины волны могут изготавливать как из кристаллов слюды, так и из оргстекла. Проще изготовить пластинку из оргстекла, так как хорошего качества слюды из стали? достаточно большой дефицит и получение необходимой толщины путем скалывания отдельных слоев слюды не позволяет получить достаточно точного значения разности фаз.

Свое название четвертьволновая пластинка получила вследствие того, что при прохождении через такую пластинку светового пучка колебания вектора, направленные вдоль двух определенных взаимно перпендикулярных направлений в плоскости пластинки, приобретают разность хода, равную четверти длины волны. При прохождении через такую пластинку линейно поляризованный свет, направление колебаний в котором составляет угол 45 ° с главными направлениями пластинки, становится поляризованным по кругу.

ЭЛЛИПТИЧЕСКАЯ И КРУГОВАЯ ПОЛЯРИЗАЦИЯ СВЕТА

Сложение двух когерентных световых волн, поляризованных в двух взаимно перпендикулярных направлениях

Отсутствие интерференционного чередования интенсивностей в опытах, не означает, что взаимодействие двух взаимно перпендикулярных световых колебаний не может приводить к доступным наблюдению на опыте изменениям в световом пучке.

Рассмотрим результат сложения двух когерентных световых волн, поляризованных в двух взаимно перпендикулярных направлениях, имеющих разную амплитуду и обладающих некоторой разностью фаз. Мы легко можем осуществить подобный случай на опыте следующим образом.


Рис. 1.

L- источник света; К -- кристаллическая пластинка; справа -- разложение светового вектора по главным направлениям пластинки.

Свет определенной длины волны (то есть принадлежащий к ограниченному спектральному интервалу), прошедший через поляризатор N, т. е. ставший линейно-поляризованным, пропустим через кристаллическую пластинку К толщины d, вырезанную из одноосного кристалла параллельно его оптической оси (рис. 1), причем допустим, что направление пучка перпендикулярно к боковой поверхности К. Сквозь пластинку будут распространяться в одном направлении, но с разной скоростью две волны, поляризованные в двух взаимно перпендикулярных направлениях, которые принято называть главными направления кристаллической пластинки. У одной из волн электрические колебания направлены вдоль оптической оси кристалла, например по СС (необыкновенный луч, показатель преломления п0), у другой -перпендикулярно к оси, т. е. по ВВ (обыкновенный луч, показатель преломления гель преломления п0).

Если направление колебаний электрического вектора в падающем поляризованном свете составляет угол?? с одним из главных направлений пластинки, то амплитуды колебаний в необыкновенной и в обыкновенной волнах будут соответственно равны

а = A cos а, b = A sin а,

где A = ОМ -- амплитуда падающей волны. Пройдя через толщу пластинки d, эти две волны приобретут разность хода, равную (п0 - ne) d. Следовательно, обыкновенная волна отстанет по фазе от необыкновенной на величину

Сложение двух взаимно перпендикулярных колебаний с разными амплитудами и разностью фаз приведет к формированию эллиптического колебания, то есть колебания, при котором конец результирующего вектора описывает эллипс в плоскости волнового фронта с той же угловой частотой щ, с которой совершаются исходные колебания.

Действительно, колебания в волнах, прошедших пластинку, описываются соотношениями

x = A cos a cos щ t = a cos щ t

у =A sin a cos (щ t --) = b cos (щ t --).

Чтобы получить траекторию результирующего колебания, надо из этих уравнений исключить время t. Имеем

cos щ t = , у=b(cos щ t cos+ sin щ t sin),

sin щ t sin= cos.

Возводя это выражение в квадрат и складывая с

(cos щ t sin)? = sin?

то есть уравнение эллипса. Форма эллипса и ориентация его относительно осей х и у зависят от значений?? и.

Таким образом, после прохождения линейно-поляризованного света через кристаллическую пластинку получаем, вообще говоря, световую волну, концы векторов E и H которой описывают эллипсы. Такой свет называется эллиптически-поляризованным.

Частный случай поляризации света

Рассмотрим случай, в котором толщина пластинки такова, что разность хода двух волн составляет четверть длины световой волны (пластинка в? волны):

M = 0, 1, 2, …

В таком случае и уравнение эллипса примет вид

то есть мы получим эллипс, ориентированный относительно главных осей пластинки. Соотношение длин его полуосей и зависит от величины угла??.

В частности, при?? = 45° находим = , так что эллипс обращается в круг, описываемый уравнением

В данном случае имеем, следовательно, свет, поляризованный по кругу (круговая, или циркулярная, поляризация). Таким образом, для получения света, поляризованного по кругу, необходимо сложение двух когерентных волн с равными амплитудами, обладающих разностью фаз и поляризованных в двух взаимно перпендикулярных плоскостях. Этого можно достичь, в частности, заставив линейно-поляризованный свет пройти через пластинку в четверть волны так, чтобы плоскость поляризации первоначальной волны составляла угол 45° с главными направлениями в пластинке.

Чтобы осуществить разность хода в четверть волны, можно применить слюдяную пластинку (слюда представляет собой кристалл двуосный, в котором понятие обыкновенного луча теряет смысл) толщиной 0,027 мм = 27 мкм (для желтого света, испускаемого натриевым пламенем).

Хотя изготовление таких пластинок и не представляет особого труда, все же предпочитают пользоваться более толстыми пластинками, дающими разность хода, равную (т + 1/4)л, где m - некоторое целое число.

В зависимости от ориентации пластинки в четверть волны приобретаемая разность фаз равна +р/2 или -- р/2, то есть компонента вдоль оси Ох опережает или отстает на р/2 по фазе от компоненты по оси Оу. В соответствии с этим результирующий вектор вращается против часовой стрелки (влево) или по часовой стрелке (вправо). Поэтому принято различать левую и правую эллиптическую или круговую поляризации.

Благодаря прошлым урокам нам известно, что свет является совокупностью прямолинейных лучей, определенным образом распространяющихся в пространстве. Однако для объяснения свойств некоторых явлений мы не можем пользоваться представлениями геометрической оптики, то есть не можем игнорировать волновые свойства света. Например, при прохождении солнечного света через стеклянную призму на экране возникает картина чередующихся цветных полос (рис. 1), которые называют спектром; при внимательном рассмотрении мыльного пузыря видна его причудливая окраска (рис. 2), постоянно меняющаяся с течением времени. Для объяснения этих и других подобных примеров мы будем использовать теорию, которая опирается на волновые свойства света, то есть волновую оптику.

Рис. 1. Разложение света в спектр

Рис. 2. Мыльный пузырь

На этом уроке мы рассмотрим явление, которое называется интерференцией света. С помощью этого явления ученые в XIX веке доказали, что свет имеет волновую природу, а не корпускулярную.

Явление интерференции заключается в следующем : при наложении друг на друга в пространстве двух или более волн возникает устойчивая картина распределения амплитуд, при этом в некоторых точках пространства результирующая амплитуда является суммой амплитуд исходных волн, в других точках пространства результирующая амплитуда становится равной нулю. При этом на частоты и фазы исходно складывающихся волн должны быть наложены определенные ограничения.

Пример сложения двух световых волн

Увеличение или уменьшение амплитуды зависит от того, с какой разностью фаз две складывающиеся волны приходят в данную точку.

На рис. 3 показан случай сложения двух волн от точечных источников и , находящихся на расстоянии и от точки M , в которой производят измерения амплитуды. Обе волны имеют в точке M в общем случае различные амплитуды, так как до попадания в эту точку они проходят разные пути и их фазы различаются.

Рис. 3. Сложение двух волн

На рис. 4 показано, как зависит результирующая амплитуда колебания в точке M от того, в каких фазах приходят ее две синусоидальные волны. Когда гребни совпадают, то результирующая амплитуда максимально увеличивается. Когда гребень совпадает со впадиной, то результирующая амплитуда обнуляется. В промежуточных случаях результирующая амплитуда имеет значение между нулем и суммой амплитуд складывающихся волн (рис. 4).

Рис. 4. Сложение двух синусоидальных волн

Максимальное значение результирующей амплитуды будет наблюдаться в том случае, когда разность фаз между двумя складывающимися волнами равна нулю. То же самое должно наблюдаться, когда разность фаз равна , так как - это период функции синуса (рис. 5).

Рис. 5. Максимальное значение результирующей амплитуды

Амплитуда колебаний в данной точке максимальна , если разность хода двух волн, возбуждающих колебание в этой точке, равна целому числу длин волн или четному числу полуволн (рис. 6).


Рис. 6. Максимальная амплитуда колебаний в точке M

Амплитуда колебаний в данной точке минимальна, если разность хода двух волн, возбуждающих колебание в этой точке, равна нечетному числу полуволн или полуцелому числу длин волн (рис. 7).


Рис. 7. Минимальная амплитуда колебаний в точке M

, где .

Интерференцию можно наблюдать только в случае сложения когерентных волн (рис. 8).


Рис. 8. Интерференция

Когерентные волны - это волны, которые имеют одинаковые частоты, постоянную во времени в данной точке разность фаз (рис. 9).


Рис. 9. Когерентные волны

Если волны не когерентны, то в любую точку наблюдения две волны приходят со случайной разностью фаз. Таким образом, амплитуда после сложения двух волн также будет случайной величиной, которая изменяется с течением времени, и эксперимент будет показывать отсутствие интерференционной картины.

Некогерентные волны - это волны, у которых разность фаз непрерывно меняется (рис. 10).


Рис. 10. Некогерентные волны

Существует много ситуаций, когда можно наблюдать интерференцию световых лучей. Например, бензиновое пятно в луже (рис. 11), мыльный пузырь (рис. 2).

Рис. 11. Бензиновое пятно в луже

Пример с мыльными пузырями относится к случаю так называемой интерференции в тонких пленках. Английский ученый Томас Юнг (рис. 12) первым пришел к мысли о возможности объяснения цветов тонких пленок сложением волн, одна из которых отражается от наружной поверхности пленки, а другая – от внутренней.

Рис. 12. Томас Юнг (1773-1829)

Результат интерференции зависит от угла падения света на пленку, ее толщины и длины волны света. Усиление произойдет в том случае, если преломленная волна отстанет от отраженной на целое число длин волн. Если же вторая волна отстанет на половину волны или на нечетное число полуволн, то произойдет ослабление света (рис. 13).


Рис. 13. Отражение световых волн от поверхностей пленки

Когерентность волн, отраженных от внешней и внутренней поверхности пленки, объясняется тем, что обе эти волны являются частями одной и той же падающей волны.

Различие в цветах соответствует тому, что свет может состоять из волн различной частоты (длины). Если свет состоит из волн с одинаковыми частотами, то он называется монохроматическим и наш глаз воспринимает его как один цвет.

Монохроматический свет (от др.-греч. μόνος – один, χρῶμα – цвет) – электромагнитная волна одной определенной и строго постоянной частоты из диапазона частот, непосредственно воспринимаемых человеческим глазом. Происхождение термина связано с тем, что различие в частоте световых волн воспринимается человеком как различие в цвете. Однако по своей физической природе электромагнитные волны видимого диапазона не отличаются от волн других диапазонов (инфракрасного, ультрафиолетового, рентгеновского и т. д.), и по отношению к ним также используют термин «монохроматический» («одноцветный»), хотя никакого ощущения цвета эти волны не дают. Свет, состоящий из волн с различными длинами, называется полихроматическим (свет от солнца).

Таким образом, если на тонкую пленку падает монохроматический свет, то интерференционная картина будет зависеть от угла падения (при некоторых углах волны будут усиливать друг друга, при других углах – гасить). При полихроматическом свете для наблюдения интерференционной картины удобно использовать пленку переменной толщины, при этом волны с разными длинами будут интерферировать в разных точках, и мы можем получить цветную картинку (как в мыльном пузыре).

Существуют специальные приборы – интерферометры (рис. 14, 15), с помощью которых можно измерять длины волн, показатели преломления различных веществ и другие характеристики.

Рис. 14. Интерферометр Жамена

Рис. 15. Интерферометр Физо

К примеру, в 1887 году два американских физика, Майкельсон и Морли (рис. 16), сконструировали специальный интерферометр (рис. 17), с помощью которого они собирались доказать или опровергнуть существование эфира. Этот опыт является одним из самых знаменитых экспериментов в физике.

Рис. 17. Звездный интерферометр Майкельсона

Интерференцию применяют и в других областях человеческой деятельности (для оценки качества обработки поверхности, для просветления оптики, для получения высокоотражающих покрытий).

Условие

Два полупрозрачных зеркала расположены параллельно друг другу. На них перпендикулярно плоскости зеркал падает световая волна частотой (рис. 18). Чему должно быть равно минимальное расстояние между зеркалами, чтобы наблюдался минимум интерференции проходящих лучей первого порядка?

Рис. 18. Иллюстрация к задаче

Дано :

Найти :

Решение

Один луч пройдет сквозь оба зеркала. Другой пройдет сквозь первое зеркало, отразится от второго и первого и пройдет сквозь второе. Разность хода этих лучей составит удвоенное расстояние между зеркалами.

Номер минимума соответствует значению целого числа .

Длина волны равна:

где – скорость света.

Подставим в формулу разности хода значение и значение длины волны:

Ответ : .

Для получения когерентных световых волн при использовании обычных источников света применяют методы деления волнового фронта. При этом световая волна, испущенная каким-либо источником, делится на две или более частей, когерентных между собой.

1. Получение когерентных волн методом Юнга

Источником света служит ярко освещенная щель, от которой световая волна падает на две узкие щели и параллельные исходной щели S (рис. 19). Таким образом, щели и служат когерентными источниками. На экране в области BC наблюдается интерференционная картина в виде чередующихся светлых и темных полос.

Рис. 19. Получение когерентных волн методом Юнга

2. Получение когерентных волн с помощью бипризмы Френеля

Данная бипризма состоит из двух одинаковых прямоугольных призм с очень малым преломляющим углом, сложенных своими основаниями. Свет от источника преломляется в обеих призмах, в результате этого за призмой распространяются лучи, как бы исходящие из мнимых источников и (рис. 20). Эти источники являются когерентными. Таким образом, на экране в области BC наблюдается интерференционная картина.

Рис. 20. Получение когерентных волн с помощью бипризмы Френеля

3. Получение когерентных волн с помощью разделения по оптической длине пути

Две когерентные волны создаются одним источником, но до экрана проходят разные геометрические пути длины и (рис. 21). При этом каждый луч идет в среде со своим абсолютным показателем преломления. Разность фаз между волнами, приходящими в точку на экране, равна следующей величине:

где и – длины волн в средах, показатели преломления которых равны соответственно и .

Рис. 21. Получение когерентных волн с помощью разделения по оптической длине пути

Произведение геометрической длины пути на абсолютный показатель преломления среды называется оптической длиной пути .

,

– оптическая разность хода интерферирующих волн.

С помощью интерференции можно оценить качество обработки поверхности изделия с точностью до длины волны. Для этого нужно создать тонкую клиновидную прослойку воздуха между поверхностью образца и очень гладкой эталонной пластиной. Тогда неровности поверхности до см вызовут заметное искривление интерференционных полос, образующихся при отражении света от проверяемых поверхностей и нижней грани (рис. 22).

Рис. 22. Проверка качества обработки поверхности

Множество современной фототехники использует большое количество оптических стекол (линзы, призмы и т. д.). Проходя через такие системы, световой поток испытывает многократное отражение, что пагубно влияет на качество изображения, поскольку при отражении теряется часть энергии. Чтобы избежать этого эффекта, необходимо применять специальные методы, одним из которых является метод просветления оптики.

Просветление оптики основано на явлении интерференции. На поверхность оптического стекла, например линзы, наносят тонкую пленку с показателем преломления, меньшим показателя преломления стекла.

На рис. 23 показан ход луча, падающего на поверхность раздела под небольшим углом. Для упрощения все вычисления делаем для угла, равного нулю.

Рис. 23. Просветление оптики

Разность хода световых волн 1 и 2, отраженных от верхней и нижней поверхности пленки, равна удвоенной толщине пленки:

Длина волны в пленке меньше длины волны в вакууме в n раз (n - показатель преломления пленки):

Для того чтобы волны 1 и 2 ослабляли друг друга, разность хода должна быть равна половине длины волны, то есть:

Если амплитуды обеих отраженных волн одинаковы или очень близки друг к другу, то гашение света будет полным. Чтобы добиться этого, подбирают соответствующим образом показатель преломления пленки, так как интенсивность отраженного света определяется отношением коэффициентов преломления двух сред.

  • Где используется явление интерференции?
  • Каково условие максимумов интерференции?
  • В некоторую точку на экране приходит два когерентных излучения с оптической разностью хода 1,2 мкм. Длина волны этих лучей в вакууме - 600 нм. Определите, что произойдет в этой точке в результате интерференции в трех случаях: а) свет идет в воздухе; б) свет идет в воде; в) свет идет в стекле с показателем преломления 1,5.
  • 2.Малые колебания математического маятника. 8

    3.Свободные затухающие механические колебания. Коэффициент затухания, логарифмический декремент. 12

    4.Электрические колебания в электромагнитном контуре. Свободные гармонические колебания. 14

    5.Вынужденные колебания в электрических цепях. Явление резонанса. 23

    6.Волны в упругой среде. Энергия упругой волны. Фазовая скорость, длина волны. Плоские и сферические волны. Стоячие волны. 25

    7.Электромагнитные волны. Волновое уравнение. Свойства волн (поперечность, синфазность, волновой вектор, интенсивность). Вектор Пойнтинга. 31

    8.Когерентность волн. Сложение волн от двух когерентных источников. Разность фаз. Формула для суммарной интенсивности. Оптическая разность хода волн. Временная когерентность. 38

    9.Явление интерференции. Условия, при выполнении которых. Пример опыта по интерференции двух когерентных волн. (Опыт Юнга. Бипризма Френеля. Зеркало Ллойда – по выбору). 39

    10.Интерференционные кольца Ньютона. Вывод формул для радиусов темных и светлых колец. 41

    11.Интерференция волн, отраженных от плоскопараллельной пластинки. 42

    12.Принцип Гюйгенса-Френеля. Дифракция Френеля на круглом отверстии и на круглом диске. Метод зон Френеля. Векторная диаграмма (спираль Френеля). 42

    1. Понятие о колебательных процессах. Гармонические колебания. Амплитуда, частота и фаза гармонических колебаний. Уравнение гармонических колебаний. Колебания груза на пружине.

    Колебательным движением (или просто колебанием) называются процессы, повторяющиеся во времени. колебательное движение является периодическим.

    Колебания называются периодическими , если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени.

      Простейшим типом периодических колебаний являются так называемые гармонические колебания.

      Любая колебательная система, в которой возвращающая сила прямо пропорциональна смещению, взятому с противоположным знаком (например, F = – kx ), совершаетгармонические колебания .

      Саму такую систему часто называют гармоническим осциллятором .

    Периодический процесс можно описать уравнением:

    По определению, колебания называются гармони-ческими, если зависимость некоторой величины x = f ( t ) имеет вид

      Расстояние груза от положения равновесия до точки, в которой находится груз, называют смещением x .

    Максимальное смещение наибольшее расстояние от положения равновесия – называетсяамплитудой и обозначается, буквойA .

    определяет смещение x в данный момент времениt и называетсяфазой колебания.

      называется начальной фазой колебания при.

    Фаза измеряется в радианах.

      Частота колебаний ν определяется, как число полных колебаний в 1 секунду. Частоту, измеряют в герцах (Гц):

      1 Гц = 1 колеб. в секунду.

    Т период колебаний – минимальный промежуток времени, по истечении которого повторяются значения всех физических величин, характеризующих колебание

    ω – циклическая (круговая ) частота – число полных колебаний за 2π секунд.

    Фаза φ не влияет на форму кривой х (t ), а влияет лишь на ее положение в некоторый произвольный момент времени t.

      Гармонические колебания являются всегда синусоидальными.

      Частота и период гармонических колебаний не зависят от амплитуды .

    Смещение описывается уравнением

    Уравнения колебаний запишем в следующем виде:


    1. Малые колебания математического маятника.


    1. Свободные затухающие механические колебания. Коэффициент затухания, логарифмический декремент.

    Отличия в следующем.

    При колебаниях, тело, возвращающееся в положении равновесия, имеет запас кинетической энергии. В случае апериодического движения энергия тела при возвращении в положение равновесия оказывается израсходованной на преодоление сил сопротивления трения.

    1. Электрические колебания в электромагнитном контуре.Свободные гармонические колебания.

    I = I 0 sin(t +)

    Период колебаний определяется поформуле Томсона :

    Свободные затухающие электрические колебания

    Всякий реальный контур обладает активным сопротивлением R . Энергия, запасенная в контуре, постепенно расходуется в этом сопротивлении на нагревание, вследствие чего колебания затухают.

    Физический смысл добротности – отношение энергий

    1. Вынужденные колебания в электрическихцепях. Явление резонанса.

    Решение уравнения при большихt :

    амплитуда колебаний заряда:

    1. Волны в упругой среде. Энергия упругой волны. Фазовая скорость, длина волны. Плоские и сферические волны. Стоячие волны.

    Процесс распространения колебаний в пространстве называется волной

    При распространении волны, частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице, передается лишь состояние колебательного движения и его энергия. Поэтому основным свойством всех волн независимо от их природы является перенос энергии без переноса вещества.

    Волны бывают поперечными (колебания происходят в плоскости, перпендикулярной направлению распространения), и продольными (сгущение и разряжение частиц среды происходят в направлении распространения).

    Если взаимосвязь между частицами среды осуществляется силами упругости , возникающими вследствие деформации среды при передаче колебаний от одних частиц к другим, то волны называются упругими (звуковые, ультразвуковые, сейсмические и др. волны).

    Упругие поперечные волны возникают в среде, обладающей сопротивлением сдвигу,

    вследствие этого:

      в жидкой и газообразной средах возможно возникновение только продольных волн;

      в твердой среде возможно возникновение как продольных, так и поперечных волн.


    Уравнением волны – называется выражение, которое дает смещение колеблющейся точки как функцию ее координат (x , y , z ) и времени t .

    Фазовая скорость. скорость распространения фазы есть

    скорость распространения волны

    1. Электромагнитные волны. Волновое уравнение. Свойства волн (поперечность, синфазность, волновой вектор, интенсивность). Вектор Пойнтинга.

    Движущийся с ускорением электрический заряд испускает электромагнитные волны.

      ЭМВ представляют собой поперечные волны и аналогичны другим типам волн.

      Однако в ЭМВ происходят колебания полей, а не вещества, как в случае волн на воде или в натянутом шнуре.

    Свойства волн!!!

    1. Когерентность волн. Сложение волн от двух когерентных источников. Разность фаз. Формула для суммарной интенсивности. Оптическая разность хода волн. Временная когерентность.

    Если частоты волн одинаковые, то зависимость от времени будет определяться только разностью начальных фаз колебаний и, каждая из которых в волнах от независимых источников случайным (хаотичным) образом меняется во времени. Если удастся каким-либо образом согласовать колебания так, чтобы эта разность не зависела от времени, или медленно менялась во времени, то интенсивность результирующей волны уже не будет равна сумме интенсивностей падающих волн и можно записать:

    Такие «согласованные» по фазе волны называют когерентными.

    Таким образом, две волны будут когерентными, если слагаемое , описывающее перераспределение интенсивности в пространстве, не обращается в нуль.

    Когерентными являются, например, одинаково поляризованные волны, если их частоты одинаковы, а разность начальных фаз не зависит от времени.

    Интерференция света явление перераспределения потока световой энергии в пространстве при наложении (суперпозиции) двух или более световых волн.

    1. Интерференционные кольца Ньютона. Вывод формул для радиусов темных и светлых колец.

    Кольцевые полосы равной толщины , наблюдаемые в воздушном зазоре

    между соприкасающимися выпуклой сферической поверхностью линзы малой кривизны и плоской поверхностью стекла , называют кольцами Ньютона .


    1. Интерференция волн, отраженных от плоскопараллельной пластинки.

    2. Принцип Гюйгенса-Френеля. Дифракция Френеля на круглом отверстии и на круглом диске. Метод зон Френеля. Векторная диаграмма (спираль Френеля).

    Каждый элемент поверхности, которой достигла в данный момент волна (т.е. каждая точка волнового фронта) является центром вторичных волн, огибающая которых становится волновым фронтом в более поздний момент времени –принцип Гюйгенса

    Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

    Не так давно мы довольно подробно обсуждали свойства световых волн и их интерференцию, т. е. эффект суперпозиции двух волн от различных источников. Но при этом предполагалось, что частоты источников одинаковы. В этой же главе мы остановимся на некоторых явлениях, возникающих при интерференции двух источников с различными частотами.

    Нетрудно догадаться, что при этом произойдет. Действуя так же, как прежде, давайте предположим, что имеются два одинаковых осциллирующих источника с одной и той же частотой, причем фазы их подобраны так, что в некоторую точку сигналы приходят с одинаковой фазой. Если это свет, то в этой точке он очень ярок, если это звук, то он очень громок, а если это электроны, то их очень много. С другой стороны, если приходящие волны отличаются по фазе на 180°, то в точке не будет никаких сигналов, ибо полная амплитуда будет иметь здесь минимум. Предположим теперь, что некто крутит ручку «регулировка фазы» одного из источников и меняет разность фаз в точке то туда, то сюда, скажем сначала он делает ее нулевой, затем - равной 180° и т. д. При этом, разумеется, будет меняться и сила приходящего сигнала. Ясно теперь, что если фаза одного из источников медленно, постоянно и равномерно меняется по сравнению с другим, начиная с нуля, а затем возрастает постепенно до 10, 20, 30, 40° и т. д., то в точке мы увидим ряд слабых и сильных «пульсаций», ибо когда разность фаз проходит через 360°, в амплитуде снова возникает максимум. Но утверждение, что один источник с постоянной скоростью меняет свою фазу по отношению к другому, равносильно утверждению, что число колебаний в 1 сек у этих двух источников несколько различно.

    Итак, теперь известен ответ: если взять два источника, частоты которых немного различны, то в результате сложения получаются колебания с медленно пульсирующей интенсивностью. Иначе говоря, все сказанное здесь действительно имеет отношение к делу!

    Этот результат легко получить и математически. Предположим, например, что у нас есть две волны и забудем на минуту о всех пространственных соотношениях, а просто посмотрим, что приходит в точку . Пусть от одного источника приходит волна , а от другого - волна , причем обе частоты и не равны в точности друг другу. Разумеется, амплитуды их тоже могут быть различными, но сначала давайте предположим, что амплитуды равны. Общую задачу мы рассмотрим позднее. Полная амплитуда в точке при этом будет суммой двух косинусов. Если мы построим график зависимости амплитуды от времени, как это показано на фиг. 48.1, то окажется, что, когда гребни двух волн совпадают, получается большое отклонение, когда совпадают гребень и впадина - практически нуль, а когда гребни снова совпадают, вновь получается большая волна.

    Фиг. 48.1. Суперпозиция двух косинусообразных волн с отношением частот 8:10. Точное повторение колебаний внутри каждого биения для общего случая не типично.

    Математически нам нужно взять сумму двух косинусов и как-то ее перестроить. Для этого потребуются некоторые полезные соотношения между косинусами. Давайте получим их. Вы знаете, конечно, что

    и что вещественная часть экспоненты равна , а мнимая часть равна . Если мы возьмем вещественную часть , то получим , а для произведения

    мы получаем плюс некоторая мнимая добавка. Сейчас, однако, нам нужна только вещественная часть. Таким образом,

    Если теперь изменить знак величины , то, поскольку косинус при этом не изменяет знака, а синус изменяет знак на обратный, мы получаем аналогичное выражение для косинуса разности

    После сложения этих двух уравнений произведение синусов сократится, и мы находим, что произведение двух косинусов равно половине косинуса суммы плюс половина косинуса разности

    Теперь можно обернуть это выражение и получить формулу для , если просто положить , а , т. е. , а :

    Но вернемся к нашей проблеме. Сумма и равна

    Пусть теперь частоты приблизительно одинаковы, так что равна какой-то средней частоте, которая более или менее та же, что и каждая из них. Но разность гораздо меньше, чем и , поскольку мы предположили, что и приблизительно равны друг другу. Это означает, что результат сложения можно истолковать так, как будто есть косинусообразная волна с частотой, более или менее равной первоначальным, но что «размах» ее медленно меняется: он пульсирует с частотой, равной . Но та ли это частота, с которой мы слышим биения? Уравнение (48.0) говорит, что амплитуда ведет себя как , и это надо понимать так, что высокочастотные колебания заключены между двумя косинусоидами с противоположными знаками (пунктирная линия на фиг. 48.1). Хотя амплитуда действительно меняется с частотой однако если речь идет об интенсивности волн, то мы должны представлять себе частоту в два раза большую. Иначе говоря, модуляция амплитуды в смысле ее интенсивности происходит с частотой , хотя мы и умножаем на косинус половинной частоты.

    т. е. снова оказывается, что высокочастотная волна модулируется малой частотой.

    Волновые свойства света наиболее отчетливо обнаруживают себя в интерференции и дифракции . Эти явления характерны для волн любой природы и сравнительно просто наблюдаются на опыте для волн на поверхности воды или для звуковых волн. Наблюдать же интерференцию и дифракцию световых волн можно лишь при определенных условиях. Свет, испускаемый обычными (нелазерными) источниками, не бывает строго монохроматическим. Поэтому для наблюдения интерференции свет от одного источника нужно разделить на два пучка и затем наложить их друг на друга.

    Интерференционный микроскоп.

    Существующие экспериментальные методы получения когерентных пучков из одного светового пучка можно разделить на два класса .

    В методе деления волнового фронта пучок пропускается, например, через два близко расположенных отверстия в непрозрачном экране (опыт Юнга). Такой метод пригоден лишь при достаточно малых размерах источника.

    В другом методе пучок делится на одной или нескольких частично отражающих, частично пропускающих поверхностях. Этот метод деления амплитуды может применяться и при протяженных источниках. Он обеспечивает большую интенсивность и лежит в основе действия разнообразных интерферометров. В зависимости от числа интерферирующих пучков различают двулучевые и многолучевые интерферометры. Они имеют важные практические применения в технике, метрологии и спектроскопии.

    Пусть две волны одинаковой частоты, накладываясь друг на друга, возбуждают в некоторой точке пространства колебания одинакового направления:

    ; ,

    где под x понимаем напряженность электрического E и магнитного H полей волны, которые подчиняются принципу суперпозиции (см. п. 6).

    Амплитуду результирующего колебания при сложении колебаний, направленных вдоль одной прямой, найдем по формуле (2.2.2):

    Если разность фаз колебаний , возбужденных волнами в некоторой точке пространства , остается постоянной во времени, то такие волны называются когерентными.

    В случае некогерентных волн разность фаз непрерывно изменяется, принимая с равной вероятностью любые значения, вследствие чего среднее по времени значение равно нулю (изменяется от –1 до +1). Поэтому .

    Интенсивность света пропорциональна квадрату амплитуды: . Отсюда можно сделать вывод, что для некогерентных источников интенсивность результирующей волны всюду одинакова и равна сумме интенсивностей, создаваемых каждой из волн в отдельности :

    . (8.1.1)

    В случае когерентных волн (для каждой точки пространства), так что

    . (8.1.2)

    Последнее слагаемое в этом выражении называется интерференционным членом .

    В точках пространства, где , (в максимуме ), где , интенсивность (в минимуме ). Следовательно, при наложении двух (или нескольких) когерентных световых волн происходит пространственное перераспределение светового потока, в результате чего в одних местах возникают максимумы, а в других – минимумы интенсивности. Это явление называется интерференцией света .

    Устойчивая интерференционная картина получается лишь при сложении когерентных волн. Некогерентность естественных источников света обусловлена тем, что излучение тела слагается из волн, испускаемых многими атомами. Фазы каждого цуга волны никак не связаны друг с другом. Атомы излучают хаотически.

    Периодическая последовательность горбов и впадин волн , образующихся в процессе акта излучения одного атома , называется цугом волн или волновым цугом .

    Процесс излучения одного атома длится примерно с. При этом длина цуга .

    В одном цуге укладывается примерно длин волн.

    Условие максимума и минимума интерференции

    Пусть разделение на две когерентные волны происходит в точке О (рис. 8.1).

    До точки Р первая волна проходит в среде с показателем расстояние , а вторая в среде с показателем преломления расстояние . Если в точке О фаза колебаний (), то первая волна возбждает в точке Р колебание

    , а вторая ,



    Похожие статьи