Световой поток и сила света. Единица измерения светового потока люмен

Свет, падающий на поверхность нашей планеты Земля от Солнца, является источником жизни для всех ее живых организмов. Солнечные лучи, распространяясь со скоростью 300000 км/ч., оказывают следующие воздействия на окружающую среду:

  • участие в фотосинтезе;
  • видимый свет;
  • тепло;
  • обеззараживание;
  • облучение.

Исходя из этого естественный свет — это лучистая энергия в виде электромагнитных волн, обладающих разными свойствами в зависимости от их общего показателя, которым является длина. Длина излучений измеряется в нанометрах (0,000000001 м) и варьируется для инфракрасных волн от 700 до 10000 нм., видимых человеческому глазу 400-750 нм., ультрафиолетовых — 10-370 нм. и рентгеновских 0,00001-10 нм.

Для человеческого глаза наиболее оптимальной считается длина видимых электромагнитных колебаний от 500 до 600 нм., хуже воспринимаются красные и фиолетовые лучи, а инфракрасные и ультрафиолетовые ощущаются только по нагреву и загару кожного покрова.

С развитием науки и техники человечество научилось создавать искусственные источники всех разновидностей электромагнитных волн, используемых в разных отраслях промышленности и сельского хозяйства и других сферах деятельности. Рассмотрим основные светотехнические понятия, раскрывающие все характеристики источников света.

Что такое световой поток?

Световой поток — это мощность видимого излучения источника электромагнитных волн, которое ощущает человеческий глаз. Обозначается буквой Ф и измеряется в люменах (лм).

Поток лучей света, отдаляясь от источника, в пространстве распространяется неравномерно, теряя свою плотность. Эту пространственную лучистую плотность светового потока характеризует такое понятие как сила света I (измеряется в канделах – кд.), которое определяется из отношения светового потока Ф к телесному углу ω.

I =Ф/ω.

Чтобы разобраться, как эти величины взаимосвязаны друг с другом обратимся к рисунку.

Если взять точечный источник света 0, который будет светить в пространстве, то будет находиться внутри освещенного шара. Теперь представим, что световой поток Ф будет распространяться на выбранный участок сферы площадью S, в результате образуется конус, стороной которого будет являться радиус шара. Этот пространственный угол, являющийся вершиной конуса, и является телесным и определяется, как отношение площади S к квадрату радиуса сферы.

Единицей телесного угла является стерадиан (ср), который образует на поверхности светящегося шара площадь, равную по значению квадрату его радиуса.

Освещенность

Освещенность характеризует то, как количественно изменяется плотность светового потока источника света в пространстве, лучи которого падают на любые поверхности, удаленные на разные расстояния от места излучения. Определяется отношением светового потока Ф к освещаемой поверхности S:

Снова обратимся к рисунку!

Итак, возьмем также точечный источник света А, сила света I α светового потока которого направлена на участок площадью S какой-либо поверхности. Расстояние между источником света А и площадью равно l. В итоге образуется конус с наклоном, с углом α между направлением силы света I α и стороной конуса и пространственным углом ω. Тогда:

ω=S*cosα/l 2 и вычисляем Ф= I α *S*cosα/l 2 .

Определяем освещенность элемента по следующему выражению:

Е= I α *cosα/l 2 .

Таким образом, освещенность определяется силой света расстоянием до освещаемой поверхности, т.е. чем дальше находится предмет от источника видимого излучения, тем меньше на него попадает света!

Единица освещенности называется люксом и обозначается как (лк).

Яркость

При попадании светового потока на поверхность какого-либо предмета, то он частично поглощается, а другая его часть отражается, создавая зрительное восприятие этого предмета на расстоянии. Если два освещенных объекта темного и светлого цвета разместить на одном и том же расстоянии от человеческого глаза, то лучше будет виден светлый объект, то есть он лучше отражает световой поток источника света. Для сравнения, где будет светлее, в комнате со светло-зелеными или темно-коричневыми обоями при одинаковой освещенности? Конечно же, в комнате со светло-зеленым покрытием стен.

Таким образом, под яркостью освещаемой поверхности понимают то количество отраженной силы света относительно глаза наблюдателя, которое будет зависеть от окраски и отражающих свойств этой поверхности.

Яркость обозначается буквой L и равна отношению силы света к площади проекции освещаемой поверхности:

Как видно из формулы, яркость измеряется в кандела на один квадратный метр (кд/м2).

Данная формула справедлива в том случае, если глаз наблюдателя находится под углом 90 градусов к отражающей поверхности, так как тогда угол между падающим и отражающим углом составит 0 градусов, а cos0=1!

Если освещаемая поверхность будет рассматриваться человеческим глазом под некоторым углом а, то он увидит площадь проекции этой поверхности на плоскость, находящуюся под углом 90° по направлению к наблюдающему, тогда яркость будет равна:

Также термин яркость используется и для источников света, имеющих излучающие поверхности различных форм. Так, например, если взять лампу накаливания с колбой в форме шара, то проекция излучения в пространстве будет в виде круга с площадью πD2/4. Для цилиндрических ламп (газоразрядные) проекция представляет собой множество прямоугольников, которые вычисляются как произведение длины и ширины, а в данном случае умножения диаметра колбы на ее длину.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

Исходная величина

Преобразованная величина

люкс метр-кандела сантиметр-кандела фут-кандела фот нокс кандела-стерадиан на кв. метр люмен на кв. метр люмен на кв. сантиметр люмен на кв. фут ватт на кв. см (при 555 нм)

Подробнее об освещенности

Общие сведения

Освещенность - это световая величина, которая определяет количество света, попадающего на определенную площадь поверхности тела. Она зависит от длины волны света, так как человеческий глаз воспринимает яркость световых волн разной длины, то есть разного цвета, по-разному. Освещенность вычисляют отдельно для волн разной длины, так как люди воспринимают свет с длиной волны в 550 нанометров (зеленый), и цвета, находящиеся рядом в спектре (желтый и оранжевый), как самые яркие. Свет, образуемый более длинными или короткими волнами (фиолетовый, синий, красный) воспринимается, как более темный. Часто освещенность связывают с понятием яркости.

Освещенность обратно пропорциональна площади, на которую падает свет. То есть, при освещении поверхности одной и той же лампой, освещенность большей площади будет меньше, чем освещенность меньшей площади.

Разница между яркостью и освещенностью

Яркость Освещенность

В русском языке слово «яркость» имеет два значения. Яркость может означать физическую величину, то есть характеристику светящихся тел, равную отношению силы света в определенном направлении к площади проекции светящейся поверхности на плоскость, перпендикулярную этому направлению. Также она может определять более субъективное понятие об общей яркости, которое зависит от многих факторов, например особенностей глаз того, кто смотрит на этот свет, или количества света в окружающей среде. Чем меньше света вокруг, тем ярче кажется источник света. Чтобы не путать эти два понятия с освещенностью стоит запомнить, что:

яркость характеризует свет, отраженный от поверхности светящегося тела или посылаемый этой поверхностью;

освещенность характеризует падающий на освещаемую поверхность свет.

В астрономии яркость характеризует как излучающую (звезды), так и отражающую (планеты) способность поверхности небесных тел и измеряется по фотометрической шкале звездных яркостей. Причем, чем ярче звезда, тем меньше величина ее фотометрической яркости. Самые яркие звезды имеют отрицательную величину звездной яркости.

Единицы измерения

Освещенность чаще всего измеряют в единицах СИ люксах . Один люкс равен одному люмену на квадратный метр. Те, кто предпочитают метрическим единицам имперские, используют для измерения освещенности фут-канделу . Часто ее применяют в фотографии и кино, а также в некоторых других областях. Фут в названии используется потому, что одна фут-кандела обозначает освещенность одной канделой поверхности в один квадратный фут, которую измеряют на расстоянии одного фута (чуть больше 30 см).

Фотометр

Фотометр - это устройство, которое измеряет освещенность. Обычно свет поступает на фотодетектор, преобразуется в электрический сигнал и измеряется. Иногда встречаются фотометры, которые работают по другому принципу. Большая часть фотометров показывают информацию об освещенности в люксах, хотя иногда используются и другие единицы. Фотометры, называемые экспонометрами, помогают фотографам и операторам определить выдержку и диафрагму. Кроме этого фотометры используют для определения безопасной освещенности на рабочем месте, в растениеводстве, в музеях, и во многих других отраслях, где необходимо знать и поддерживать определенную освещенность.

Освещенность и безопасность на рабочем месте

Работа в темном помещении грозит ухудшением зрения, депрессией и другими физиологическими и психологическими проблемами. Именно поэтому многие правила охраны труда включают требования о минимальной безопасной освещенности рабочего места. Измерения обычно проводят фотометром, который выдает конечный результат в зависимости от площади распространения света. Это необходимо для того, чтобы обеспечить достаточную освещенность во всем помещении.

Освещенность в фото- и видеосъемке

В большинстве современных камер имеются встроенные экспонометры, упрощающие работу фотографа или оператора. Экспонометр необходим для того, чтобы фотограф или оператор могли определить, сколько света нужно пропустить на пленку или фотоматрицу в зависимости от освещенности снимаемого объекта. Освещенность в люксах преобразуется экспонометром в возможные комбинации выдержки и диафрагмы, которые потом выбираются вручную или автоматически, в зависимости от того, как настроена камера. Обычно предлагаемые комбинации зависят от настроек в камере, а также от того, что фотограф или оператор хочет изобразить. В студии и на съемочной площадке часто используют внешний или встроенный в камеру экспонометр, чтобы определить, достаточно ли освещения обеспечивают используемые источники света.

Для получения хороших фотографий или видеоматериала в условиях плохого освещения на пленку или фотоматрицу должно попасть достаточное количество света. Этого не трудно добиться с помощью фотоаппарата - нужно только установить правильную экспозицию. С видеокамерами дело обстоит сложнее. Для видеосъемки высокого качества обычно нужно устанавливать дополнительное освещение, иначе видео будет слишком темным или с сильным цифровым шумом. Это не всегда возможно. Некоторые видеокамеры специально разрабатывают для съемки в условиях слабой освещенности.

Камеры, предназначенные для съемки в условиях слабой освещенности

Есть два вида камер для съемок в условиях слабой освещенности: в одних используется оптика более высокого уровня, а в других - более совершенная электроника. Оптика пропускает больше света в объектив, а электроника лучше обрабатывает даже тот малый свет, что попадает в камеру. Обычно именно с электроникой связаны проблемы и побочные эффекты, описанные ниже. Светосильная оптика позволяет снять видео более высокого качества, но ее недостатки - дополнительный вес из-за большого количества стекла и значительно более высокая цена.

Кроме этого, на качество съемки влияет установленная в видео- и фотокамерах одноматричная или трехматричная фотоматрица. В трехматричной матрице весь поступающий свет делится с помощью призмы на три цвета - красный, зеленый и синий. Качество изображения в темных условиях лучше в трехматричных камерах, чем в одноматричных, так как при прохождении через призму рассеивается меньше света, чем при его обработке фильтром в одноматричной камере.

Существует два основных вида фотоматриц - на приборах с зарядовой связью (ПЗС) и выполненные на основе КМОП-технологии (комплементарный металлооксидный полупроводник). В первом обычно установлен датчик, на который поступает свет, и процессор, который обрабатывает изображение. В КМОП-матрицах датчик и процессор обычно объединены. В условиях недостаточного освещения камеры с ПЗС-матрицами обычно дают изображение лучшего качества, а достоинства КМОП-матриц в том, что они дешевле и потребляют меньше энергии.

Размер фотоматрицы также влияет на качество изображения. Если съемка происходит с малым количеством света, то чем больше матрица - тем лучше качество изображения, а чем меньше матрица - тем больше проблем с изображением - на нем появляется цифровой шум. Большие матрицы устанавливают в более дорогих камерах, и для них необходима более мощная (и, как следствие - тяжелая) оптика. Фотокамеры с такими матрицами позволяют снимать профессиональное видео. Например, в последнее время появился ряд фильмов полностью снятых на такие камеры как Canon 5D Mark II или Mark III, у которых размер матрицы - 24 x 36 мм.

Производители обычно указывают, в каких минимальных условиях может работать камера, например при освещенности от 2 люкс. Эта информация не стандартизирована, то есть производитель решает сам, какое видео считать качественным. Иногда две камеры с одним и тем же показателем минимальной освещенности дают разное качество съемки. Альянс отраслей электронной промышленности EIA (от английского Electronic Industries Association) в США предложил стандартизированную систему определения светочувствительности камер, но пока он используется только некоторыми производителями и не принят повсеместно. Поэтому часто, чтобы сравнить две камеры с одинаковыми световыми характеристиками, нужно испробовать их в действии.

На данный момент любая камера, даже рассчитанная на работу в условиях низкой освещенности, может давать картинку низкого качества, с высокой зернистостью и послесвечением. Чтобы решить некоторые из этих проблем возможно предпринять следующие шаги:

  • Снимать на штативе;
  • Работать в ручном режиме;
  • Не использовать режим переменного фокусного расстояния, а вместо этого перенести камеру как можно ближе к объекту съемки;
  • Не использовать автоматическую фокусировку и автоматический выбор ISO - при большей величине ISO увеличивается шум;
  • Снимать с выдержкой в 1/30;
  • Использовать рассеянный свет;
  • Если нет возможности установить дополнительное освещение, то использовать весь возможный свет вокруг, например уличные фонари и лунный свет.

Несмотря на отсутствие стандартизации о чувствительности камер к освещенности, для ночной съемки все равно лучше выбрать камеру, на которой указано, что она работает при 2 люкс или ниже. Также следует помнить, что даже если камера действительно хорошо снимает в темных условиях, ее чувствительность к освещенности, указанная в люксах - чувствительность к свету, направленному на объект, но камера на самом деле получает свет, отраженный от объекта. При отражении часть света рассеивается, и чем дальше камера от объекта - тем меньше света попадает в объектив, что ухудшает качество съемки.

Экспозиционное число

Экспозиционное число (англ. Exposure Value, EV) - целое число, характеризующее возможные комбинации выдержки и диафрагмы в фото, кино- или видеокамере. Все сочетания выдержки и диафрагмы, при которых на пленку или светочувствительную матрицу попадает одинаковое количество света, имеют одинаковое экспозиционное число.

Несколько комбинаций выдержки и диафрагмы в камере при одном и том же экспозиционном числе позволяют получить примерно одинаковое по плотности изображение. Однако изображения при этом будут различными. Это связано с тем, что при разных значениях диафрагмы глубина резко изображаемого пространства будет различной; при разных значениях выдержки изображение на пленке или матрице будет находиться разное время, в результате чего оно будет в разной степени смазано или совсем не смазано. Например, сочетания f/22 - 1/30 и f/2.8 - 1/2000 характеризуются одним и тем же экспозиционным числом, но первое изображение будет иметь большую глубину резкости и может оказаться смазанным, а второе будет иметь малую глубину резкости и, вполне возможно, совсем не будет смазанным.

Бóльшие значения EV используются, если объект съемки лучше освещен. Например, экспозиционное число (при светочувствительности ISO 100) EV100 = 13 можно использовать при съемке ландшафта, если на небе имеется облачность, а EV100 = –4 годится для съемки яркого полярного сияния.

По определению,

EV = log 2 (N 2 /t )

2 EV = N 2 /t , (1)

    где
  • N - диафрагменное число (например: 2; 2,8; 4; 5,6, и т. д.)
  • t - выдержка в секундах (например: 30, 4, 2, 1, 1/2, 1/4, 1/30, 1/100, и т. д.)

Например, для комбинации f/2 и 1/30, экспозиционное число

EV = log 2 (2 2 /(1/30)) = log 2 (2 2 × 30) = 6.9 ≈ 7.

Это число может быть использовано для съемки ночных сцен и освещенных витрин. Комбинация f/5.6 с выдержкой 1/250 дает экспозиционное число

EV = log 2 (5.6 2 /(1/250)) = log 2 (5.6 2 × 250) = log 2 (7840) = 12.93 ≈ 13,

которое можно использовать для съемки пейзажа с облачным небом и без теней.

Следует отметить, что аргумент логарифмической функции должен быть безразмерным. В определении экспозиционного числа EV игнорируется размерность знаменателя в формуле (1) и используется только численное значение выдержки в секундах.

Взаимосвязь экспозиционного числа с яркостью и освещенностью объекта съемки

Определение экспозиции по яркости света, отраженного от объекта съемки

При использовании экспонометров или люксметров, измеряющих отраженный от объекта съемки свет, выдержка и диафрагма связаны с яркостью объекта съемки следующим соотношением:

N 2 /t = LS /K (2)

  • N - диафрагменное число;
  • t - выдержка в секундах;
  • L - усредненная яркость сцены в канделах на квадратный метр (кд/м²);
  • S - арифметическое значение светочувствительности (100, 200, 400, и т. д.);
  • K - калибровочный коэффициент экспонометра или люксметра для отраженного света; Canon и Nikon используют K = 12.5.

Из уравнений (1) и (2) получаем экспозиционное число

EV = log 2 (LS /K )

2 EV = LS /K

При K = 12,5 и ISO 100, имеем следующее уравнение для яркости:

2 EV = 100L /12.5 = 8L

L = 2 EV /8 = 2 EV /2 3 = 2 EV–3 .

Освещенность и музейные экспонаты

Скорость, с которой ветшают, выцветают и иным образом портятся музейные экспонаты, зависит от их освещенности и от силы источников света. Сотрудники музеев измеряют освещенность экспонатов, чтобы убедиться, что на экспонаты попадает безопасное количество света, а также и для того, чтобы обеспечить достаточно света для посетителей, чтобы они могли хорошо рассмотреть экспонат. Освещенность можно измерить фотометром, но во многих случаях это бывает нелегко, так как он должен находиться как можно ближе к экспонату, а для этого часто необходимо убрать защитное стекло и выключить сигнализацию, а также получить на это разрешение. Чтобы облегчить задачу, работники музея часто пользуются фотоаппаратами как фотометрами. Конечно, это не замена точным измерениям в ситуации, где найдена проблема с количеством света, который попадает на экспонат. Но для того, чтобы проверить, нужна ли более серьезная проверка с фотометром, фотоаппарата вполне достаточно.

Экспозиция определяется фотоаппаратом на основе показаний об освещенности, и, зная экспозицию, можно найти освещенность, проделав ряд несложных вычислений. В этом случае сотрудники музеев пользуются либо формулой, либо таблицей с переводом экспозиции в единицы освещенности. Во время вычислений не стоит забывать, что камера поглощает часть света, и учитывать это в конечном результате.

Освещенность в других сферах деятельности

Садоводы и растениеводы знают, что растения нуждается в свете для фотосинтеза, и им известно, сколько света необходимо каждому растению. Они измеряют освещенность в теплицах, садах и огородах, чтобы убедиться в том, что каждое растение получает достаточное количество света. Некоторые используют для этого фотометры.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Полный световой поток характеризует излучение, которое распространяется от источника по всем направлениям. Для практических же целей часто важнее знать не полный световой поток, а тот поток, который идет по определенному направлению или падает на определенную площадку. Так, например, автомобилисту важно получить достаточно большой световой поток в сравнительно узком телесном угле, внутри которого находится небольшой участок шоссе. Для работающего за письменным столом важен тот поток, который освещает стол или даже часть стола, тетрадь или книгу, т. е. поток, приходящийся на некоторую площадь. В соответствии с этим установлены два вспомогательных понятия - сила света и освещенность .

Силой света называют световой поток, рассчитанный на телесный угол, равный стерадиану, т. е. отношение светового потока , заключенного внутри телесного угла , к этому углу:

Освещенность же есть световой поток, рассчитанный на единицу площади, т. е. отношение светового потока , падающего на площадь , к этой площади:

Понятно, что формулы (70.1) и (70.2) определяют среднюю силу света и среднюю освещенность. Они будут тем ближе к истинным, чем равномернее поток или чем меньше и .

Очевидно, что с помощью источника, посылающего определенный световой поток, мы можем осуществить весьма разнообразную силу света и весьма разнообразную освещенность. Действительно, если направить весь поток или большую его часть внутрь малого телесного угла, то в направлении, выделенном этим углом, можно получить очень большую силу света. Так, например, в прожекторах удается сосредоточить большую часть потока, посылаемого электрической дугой, в очень малом телесном угле и получить в соответствующем направлении огромную силу света. В меньшей степени той же цели достигают с помощью автомобильных фар. Если сконцентрировать с помощью отражателей или линз световой поток от какого-либо источника на небольшой площади, то можно достигнуть большой освещенности. Так поступают, например, стремясь сильно осветить препарат, рассматриваемый в микроскоп; аналогичное назначение выполняет рефлектор лампы, обеспечивающий хорошую освещенность рабочего места.

Согласно формуле (70.1) световой поток равен произведению силы света на телесный угол , в котором он распространяется:

Если телесный угол , т. е. лучи строго параллельны, то световой поток также равен нулю. Это означает, что строго параллельный пучок световых лучей не несет никакой энергии, т. е. не имеет физического смысла, - ни в одном реальном опыте не может быть осуществлен строго параллельный пучок. Это - чисто геометрическое понятие. Тем не менее параллельными пучками лучей очень широко пользуются в оптике. Дело в том, что небольшие отступления от параллельности световых лучей, имеющие с энергетической точки зрения принципиальное значение, в вопросах, связанных с прохождением световых лучей через оптические системы, практически не играют никакой роли. Например, углы, под которыми лучи от удаленной звезды попадают в наш глаз или телескоп, настолько малы, что они даже не могут быть измерены существующими методами; практически эти лучи не отличаются от параллельных. Однако эти углы все же не равны нулю, и именно благодаря этому мы и видим звезду. В последнее время световые пучки с очень острой направленностью, т. е. с очень малой расходимостью световых лучей, получают при помощи лазеров (см. § 205). Однако и в этом случае углы между лучами имеют конечное значение.

>>Освещенность

  • Вспомните свои ощущения, когда вы входили в темное помещение. Становится как-то не по себе, ведь ничего не видно вокруг... Ho сто­ит включить фонарик - и близко расположенные предметы ста­новятся хорошо заметными. Te же, что находятся где-то дальше, можно едва различить по контурам. В таких случаях говорят, что предметы по-разному освещены. Выясним, что такое освещенность и от чего она зависит.

1. Определяем освещенность

От любого источника света распространяется световой поток. Чем больший световой поток упадет на поверхность того или иного тела, тем лучше его видно.

  • Физическая величина, численно равная световому потоку, падающему на еди­ницу освещенной поверхности, называется освещенностью.

Освещенность обозначается символом E и определяется по формуле:

где Ф - световой поток; S - площадь поверхности, на которую падает све­товой поток.

В СИ за единицу освещенности принят люкс (лк) (от латин. Iux - свет).

Один люкс - это освещенность такой поверхности, на один квадрат­ный метр которой падает световой поток, равный одному люмену:

Приводим некоторые значения поверхности (вблизи земли).

Освещенность Е:

Солнечными лучами в полдень (на средних широтах) - 100 000 лк;
солнечными лучами на открытом месте в пасмурный день - 1000 лк;
солнечными лучами в светлой комнате (вблизи окна) - 100 лк;
на улице при искусственном освещении - до 4 лк;
от полной луны - 0,2 лк;
от звездного неба в безлунную ночь - 0,0003 лк.

2. Выясняем, от чего зависит освещенность

Наверное, все вы видели шпионские фильмы. Представьте: какой-нибудь герой при свете слабого карманного фонарика вниматель­но просматривает документы в поисках необходимых «секретных данных». Вообще, чтобы читать, не напрягая глаз, нужна освещенность не меньше 30 лк (рис. 3.9), а это немало. И как наш герой добивается такой освещенности?

Во-первых, он подносит фонарик как мож­но ближе к документу, который просматривает. Значит, освещенность зависит от расстояния от до освещаемого предмета.

Во-вторых, он располагает фонарик пер­пендикулярно к поверхности документа, а это значит, что освещенность зависит от угла, под которым свет падает на поверхность.



Рис. 3.10. В случае увеличения расстояния до источника света площадь освещенной поверхности увеличивается

И в конце концов, для лучшего освещения он просто может взять более мощный фонарик, так как очевидно, что с увеличением силы света источника увеличивается освещенность.

Выясним, как изменяется освещенность в случае увеличения расстояния от точечного источника света до освещаемой поверхности. Пусть, например, световой поток от точечного источника падает на экран, расположенный на определенном расстоянии от источника. Если увеличить расстояние вдвое, можно заметить, что один и тот же световой поток будет освещать в 4 раза Ф большую площадь. Поскольку , то освещенность в этом случае уменьшится в 4 раза. Если увеличить расстояние в 3 раза, освещенность уменьшится в 9 - З 2 раз. Т. е. освещенность обратно пропорциональна квадрату расстояния от точечного источника света до поверхности (рис. 3 10).

Если пучок света падает перпендикулярно к поверхности, то световой поток распределяется на минимальной площади. В случае увеличения угла падения света увеличивается площадь, на которую падает световой поток, поэтому ос­вещенность уменьшается (рис. 3.11). Мы уже говорили, что в случае увеличе­ния силы света источника освещенность увеличивается. Экспериментально ус­тановлено, что освещенность прямопропорциональна силе света источника.

(Освещенность уменьшается, если в воздухе есть частички пыли, тума­на, дыма, так как они отражают и рассеивают определенную часть световой энергии .)

Если поверхность расположена перпендикулярно к направлению распро­странения света от точечного источника и свет распространяется в чистом воздухе, то освещенность можно определить по формуле:


где I - сила света источника, R - расстояние от источника света до поверх­ности.

Рис. 3.11 В случае увеличения угла падения параллельных лучей на поверхность (а 1 < а 2 < а 3) освещенность этой поверхности уменьшается, поскольку падающий световой поток распределя­ется по все большей площади поверхности


3. Учимся решать задачи

Стол освещен лампой, расположенной на высоте 1,2 м прямо над сто­лом. Определите освещенность стола непосредственно под лампой, если пол­ный световой поток лампы составляет 750 лм. Лампу считайте точечным источником света.

  • Подводим итоги

Физическая величина, численно равная световому потоку Ф, пада­ющему на единицу освещаемой поверхности S, называется освещенностью .В СИ за единицу освещенности принят люкс (лк).

Освещенность поверхности E зависит: а) от расстояния R до освещаемой поверхности б) от угла, под которым свет падает на поверхность (чем меньше угол падения, тем больше освещенность); в) от силы света I источника (E - I) ; г) прозрачности среды, в которой распространяется свет, проходя от источника до поверхности.

  • Контрольные вопросы

1. Что называют освещенностью? В каких единицах она измеряется?
2. Можно ли читать, не напрягая глаз, в светлой комнате? на улице при искусственном освещении? при полной луне?

3. Как можно уве­личить освещенность определенной поверхности?

4. Расстояние от точечного источника света до поверхности увеличили в 2 раза. Как при этом изменилась освещенность поверхности?

5. Зависит ли ос­вещенность поверхности от силы света источника, который освещает эту поверхность? Если зависит, то как?

  • Упражнения

1. Почему освещенность горизонтальных поверхностей в полдень больше, чем утром и вечером?

2. Известно, что освещенность от нескольких источников равняется сумме освещенностей от каждого из этих источников отдельно. Приведите примеры применения этого правила на практике.

3. После изучения темы «Освещенность» семиклассники решили уве­личить освещенность своего рабочего места:

Петя заменил лампочку в своей настольной лампе на лампочку большей мощности;
- Наташа поставила еще одну настольную лампу;
- Антон поднял люстру, которая висела над его столом, выше;
- Юрий расположил настольную лампу таким образом, что свет начал падать практически перпендикулярно к столу.

Какие из учеников поступили правильно? Обоснуйте ответ.

4. В ясный полдень освещенность поверхности Земли прямыми сол­нечными лучами составляет 100 000 лк. Определите световой по­ток, падающий на участок площадью 100 см 2 .

5. Определите освещенность от электрической лампочки мощностью 60 Вт, расположенной на расстоянии 2 м. Довольно ли этой осве­щенности для чтения книги?

6. Две лампочки, поставленные рядом, освещают экран. Расстояние от лампочек до экрана I м. Одну лампочку выключили. На сколько нужно приблизить экран, чтобы его освещенность не изменилась?

  • Экспериментальное задание

Для измерения силы света используют приборы, которые называются фото метрами. Изготовьте простейший аналог фотометра. Для этого возьмите белый лист (экран) и поставьте на нем жирное пятно (например, маслом). Закре­пите лист вертикально и осветите его с двух сторон разными источниками све­та (S 1 , S 2) (см. рисунок). (Свет от источников должен падать перпендикулярно к поверхности листа.) Медленно передвигая один из источников, сделайте так, чтобы пятно стало практически невидимым. Это произойдет, когда освещен­ность пятна с одной и другой стороны будет одинаковой. Т. е. E 1 = E 2 .

Поскольку . Измерьте расстояние от первого источника до экрана (R 1) и расстояние от второго источника до экрана (R 2).

Сравните, во сколько раз сила света первого источника отличается от силы света второго источника: .

  • Физика и техника в Украина

Научно-производственный комплекс «Фотоприбор» (г. Черкассы) Сфера деятельности предприятия - разработка и производство приборов точной механики, оптоэлектроники и оптомеханики разно­образного назначения, медицинской и криминалистической техники , бытовых товаров, офисных часов представительного класса. HBK «Фо­топрибор» разрабатывает и выпускает перископические прицелы для разнообразных артиллерийских установок, гирокомпасы, гироскопы, оптико-электронную аппаратуру для вертолетов, бронетехники, а так­же широкий спектр оптического оборудование и приборов различного назначения.

Физика. 7 класс: Учебник / Ф. Я. Божинова, Н. М. Кирюхин, Е. А. Кирюхина. - X.: Издательство «Ранок», 2007. - 192 с.: ил.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов Совершенствование учебников и уроков исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планы учебные программы методические рекомендации

Световой поток - мощность светового излучения, т. е. видимого излучения, оцениваемого по световому ощущению, которое оно производит на глаз человека. Световой поток измеряется в люменах.

Например лампа накаливания (100 Вт) излучает световой поток, равный 1350 лм, а люминесцентная лампа ЛБ40 - 3200.

Один люмен равен световому потоку, испускаемому точечным изотропным источником, c силой света равной одной канделе, в телесный угол, величиной в один стерадиан (1 лм = 1 кд·ср).

Полный световой поток, создаваемый изотропным источником, с силой света одна кандела, равен люменам.

Существует и другое определение: единицей светового потока является люмен (лм), равный потоку, излучаемому абсолютно черным телом с площади 0,5305 мм 2 при температуре затвердевания платины (1773° С), или 1 свеча·1 стерадиан.

Сила света - пространственная плотность светового потока, равная отношению светового потока к величине телесного угла, в котором равномерно распределено излучение. Единицей силы света является кандела.

Освещенность - поверхностная плотность светового потока, падающего на поверхность, равная отношению светового потока к величине освещаемой поверхности, по которой он равномерно распределен.

Единицей освещенности является люкс (лк) , равный освещенности, создаваемой световым потоком в 1 лм, равномерно распределенным на площади в 1 м 2 , т. е. равный 1 лм/1 м 2 .

Яркость - поверхностная плотность силы света в заданном направлении, равная отношению силы света к площади проекции светящейся поверхности на плоскость, перпендикулярную тому же направлению.

Единица яркости - кандела на квадратный метр (кд/м 2).

Светимость (светность) - поверхностная плотность светового потока, испускаемого поверхностью, равная отношению светового потока к площади светящейся поверхности.

Единицей светимости является 1 лм/м 2 .

Единицы световых величин в международной системе единиц СИ (SI)

Наименование величины Наименование единицы Выражение
через единицы СИ (SI)
Обозначение единицы
русское между-
народное
Сила света кандела кд кд cd
Световой поток люмен кд·ср лм lm
Световая энергия люмен-секунда кд·ср·с лм·с lm·s
Освещенность люкс кд·ср/м 2 лк lx
Светимость люмен на квадратный метр кд·ср/м 2 лм·м 2 lm/m 2
Яркость кандела на квадратный метр кд/м 2 кд/м 2 cd/m 2
Световая экспозиция люкс-секунда кд·ср·с/м 2 лк·с lx·s
Энергия излучения джоуль кг·м 2 /с 2 Дж J
Поток излучения, мощность излучения ватт кг·м 2 /с 3 Вт W
Световой эквивалент потока излучения люмен на ватт лм/Вт lm/W
Поверхностная плотность потока излучения ватт на квадратный метр кг/с 3 Вт/м 2 W/m 2
Энергетическая сила света (сила излучения) ватт на стерадиан кг·м2/(с 3 ·ср) Вт/ср W/sr
Энергетическая яркость ватт на стерадиан-квадратный метр кг/(с 3 ·ср) Вт/(ср·м 2) W/(sr·m 2)
Энергетическая освещенность (облученность) ватт на квадратный метр кг/с 3 Вт/м 2 W/m 2
Энергетическая светимость (излучаемость) ватт на квадратный метр кг/с 3 Вт/м 2 W/m 2

Примеры:

ЭЛЕКТРОТЕХНИЧЕСКИЙ СПРАВОЧНИК"
Под общей ред. профессоров МЭИ В.Г. Герасимова и др.
М.: Издательство МЭИ, 1998



Похожие статьи