Рассчитать мощность вентиляции. Как сделать расчет вентиляции: формулы и пример расчёта приточно-вытяжной системы

  • Производительность системы, обслуживающей до 4-х помещений.
  • Размеры воздуховодов и воздухораспределительных решеток.
  • Сопротивление воздухопроводной сети.
  • Мощность калорифера и ориентировочные затраты на электроэнергию (при использовании электрического калорифера).

Если нужно подобрать модель с увлажнением, охлаждением или рекуперацией - воспользуйтесь калькулятором на сайте Breezart.

Пример расчета вентиляции с помощью калькулятора

На этом примере мы покажем, как рассчитать приточную вентиляцию для 3-х комнатной квартиры, в которой живет семья из трех человек (двое взрослых и ребенок). Днем к ним иногда приезжают родственники, поэтому в гостиной может длительное время находиться до 5 человек. Высота потолков квартиры — 2,8 метра. Параметры помещений:

Нормы расхода для спальни и детской зададим в соответствии с рекомендациями СНиП — по 60 м³/ч на человека. Для гостиной ограничимся 30 м³/ч, поскольку большое количество людей в этой комнате бывает нечасто. По СНиП такой расход воздуха допустим для помещений с естественным проветриванием (для проветривания можно открыть окно). Если бы мы и для гостиной задали расход воздуха 60 м³/ч на человека, то требуемая производительность для этого помещения составила бы 300 м³/ч. Стоимость электроэнергии для нагрева такого количества воздуха оказалась бы очень высокой, поэтому мы пошли на компромисс между комфортом и экономичностью. Для расчета воздухообмена по кратности для всех помещений выберем комфортный двукратный воздухообмен.

Магистральный воздуховод будет прямоугольным жестким, ответвления — гибкими шумоизолированными (такое сочетание типов воздуховодов не самое распространенное, но мы выбрали его в демонстрационных целях). Для дополнительной очистки приточного воздуха будет установлен угольно-пылевой фильтр тонкой очистки класса EU5 (расчет сопротивления сети будем вести при загрязненных фильтрах). Скорости воздуха в воздуховодах и допустимый уровень шума на решетках оставим равными рекомендуемым значениям, которые заданы по умолчанию.

Расчет начнем с составления схемы воздухораспределительной сети. Эта схема позволит нам определить длину воздуховодов и количество поворотов, которые могут быть как в горизонтальной, так и вертикальной плоскости (нам нужно посчитать все повороты под прямым углом). Итак, наша схема:


Сопротивление воздухораспределительной сети равно сопротивлению самого длинного участка. Этот участок можно разделить на две части: магистральный воздуховод и самое длинное ответвление. Если у вас есть два ответвления примерно одинаковой длины, то нужно определить, какое из них имеет большее сопротивление. Для этого можно принять, что сопротивление одного поворота равно сопротивлению 2,5 метров воздуховода, тогда наибольшее сопротивление будет иметь ответвление, у которого значение (2,5* кол-во поворотов + длина воздуховода) максимально. Выделять из трассы две части необходимо для того, чтобы можно было задать разный тип воздуховодов и разную скорость воздуха для магистрального участка и ответвлений.

В нашей системе на всех ответвлениях установлены балансировочные дроссель-клапаны, позволяющие настроить расходы воздуха в каждом помещении в соответствии с проектом. Их сопротивление (в открытом состоянии) уже учтено, поскольку это стандартный элемент вентиляционной системы.

Длина магистрального воздуховода (от воздухозаборной решетки до ответвления в помещение № 1) — 15 метров, на этом участке есть 4 поворота под прямым углом. Длину приточной установки и воздушного фильтра можно не учитывать (их сопротивление будет учтено отдельно), а сопротивление шумоглушителя можно принять равным сопротивлению воздуховода той же длины, то есть просто посчитать его частью магистрального воздуховода. Длина самого длинного ответвления составляет 7 метров, на нем есть 3 поворота под прямым углом (один — в месте ответвления, один — в воздуховоде и один — в адаптере). Таким образом, мы задали все необходимые исходные данные и теперь можем приступать к расчетам (скриншот). Результаты расчета сведены в таблицы:

Результаты расчета по помещениям


Результаты расчета общих параметров
Тип вентсистемы Обычная VAV
Производительность 365 м³/ч 243 м³/ч
Площадь сечения магистрального воздуховода 253 см² 169 см²
Рекомендуемые размеры магистрального воздуховода 160x160 мм
90x315 мм
125x250 мм
125x140 мм
90x200 мм
140x140 мм
Сопротивление воздухопроводной сети 219 Па 228 Па
Мощность калорифера 5.40 кВт 3.59 кВт
Рекомендуемая приточная установка Breezart 550 Lux
(в конфигурации на 550 м³/ч)
Breezart 550 Lux (VAV)
Максимальная производительность
рекомендованной ПУ
438 м³/ч 433 м³/ч
Мощность электрич. калорифера ПУ 4.8 кВт 4.8 кВт
Среднемесячные затраты на электроэнергию 2698 рублей 1619 рублей

Расчет воздухопроводной сети

  • Для каждого помещения (подраздел 1.2) рассчитывается производительность, определяется сечение воздуховода и подбирается подходящий воздуховод стандартного диаметра. По каталогу Арктос определяются размеры распределительных решеток с заданным уровнем шума (используются данные для серий АМН, АДН, АМР, АДР). Вы можете использовать и другие решетки с такими же размерами — в этом случае возможно незначительное изменение уровня шума и сопротивления сети. В нашем случае решетки для всех помещений оказались одинаковыми, поскольку при уровне шума в 25 дБ(А) допустимый расход воздуха через них составляет 180 м³/ч (решеток меньшего размера в этих сериях нет).
  • Сумма расходов воздуха по всем трем помещениям дает нам общую производительность системы (подраздел 1.3). При использовании VAV-системы производительность системы будет на треть ниже за счет раздельной регулировки расхода воздуха в каждом помещении. Далее рассчитывается сечение магистрального воздуховода (в правой колонке — для VAV системы) и подбираются подходящие по размерам воздуховоды прямоугольного сечения (обычно дается несколько вариантов с разным соотношением размеров сторон). В конце раздела рассчитывается сопротивление воздухопроводной сети, которое получилось весьма большим — это связано с использованием в вентсистеме фильтра тонкой очистки, который имеет высокое сопротивление.
  • Мы получили все необходимые данные для комплектации воздухораспределительной сети, за исключением размера магистрального воздуховода между ответвлениями 1 и 3 (в калькуляторе этот параметр не рассчитывается, поскольку конфигурация сети заранее неизвестна). Однако площадь сечение этого участка можно легко рассчитать вручную: из площади сечения магистрального воздуховода нужно вычесть площадь сечения ответвления №3. Получив площадь сечения воздуховода, его размер можно определить по .

Расчет мощности калорифера и выбор приточной установки

Рекомендуемая модель Breezart 550 Lux имеет программно настраиваемые параметры (производительность и мощность калорифера), поэтому в скобках указана производительность, которая должна быть выбрана при настройке ПУ. Можно заметить, что максимально возможная мощность калорифера этой ПУ на 11% ниже расчетного значения. Недостаток мощность будет заметен только при температуре наружного воздуха ниже -22°С, а это бывает не часто. В таких случаях приточная установка будет автоматически переключаться на меньшую скорость для поддержания заданной температуры на выходе (функция «Комфорт»).

В результатах расчета помимо требуемой производительности системы вентиляции указывается максимальная производительность ПУ при заданном сопротивлении сети. Если эта производительность оказывается заметно выше требуемого значения, можно воспользоваться возможностью программного ограничения максимальной производительности, которая доступна для всех вентустановок Breezart. Для VAV-системы максимальная производительность указывается для справки, поскольку регулировка ее производительности производится автоматически в процессе работы системы.

Расчет стоимости эксплуатации

В этом разделе рассчитывается стоимость электроэнергии, затрачиваемой на нагрев воздуха в холодный период года. Затраты для VAV-системы зависят от ее конфигурации и режима работы, поэтому принимаются равными среднему значению: 60% от затрат обычной системы вентиляции. В нашем случае можно сэкономить снижая расход воздуха ночью в гостиной, а днем — в спальне.




— это система, при которой отсутствует принудительная движущая сила: вентилятор или другой агрегат, а перетекание воздуха происходит под воздействием перепадов давления. Основные составляющие системы — это вертикальные каналы, начинающиеся в вентилируемом помещении и заканчивающиеся выше уровня кровли как минимум на 1 м. Расчет их количества, а также определение их места расположения производится на этапе проектирования строения.

Перепад температур в нижней и верхней точке канала способствует тому, что воздух (в доме он теплее, чем снаружи) поднимается вверх. Главными показателями, которые воздействуют на силу тяги являются: высота и сечение канала. Помимо них на эффективность работы системы естественной вентиляции влияет теплоизоляция шахты, повороты, препятствия, сужения в ходах, а также ветер, причем он может и способствовать тяге, и снижать ее.

Такая система имеет довольно простое обустройство и не требует значительных затрат как при монтаже, так и во время эксплуатации. В нее не входят механизмы с электроприводами, она работает бесшумно. Но у естественной вентиляции есть и недостатки:

  • эффективность работы напрямую зависит от атмосферных явлений, поэтому используется она не оптимально большую часть года;
  • производительность невозможно отрегулировать, единственное, что подлежит корректировке — это воздухообмен, и то лишь в сторону уменьшения;
  • в холодное время года является причиной значительных теплопотерь;
  • в жару не работает (отсутствует перепад температур) и воздухообмен возможен лишь через открытые форточки;
  • при неэффективной работе могут возникнуть в помещении сырость и сквозняки.

Нормы производительности и каналы естественной вентиляции

Оптимальным вариантом расположения каналов является ниша в стене строения. При прокладывании следует помнить, что наилучшая тяга будет при ровной и гладкой поверхности воздуховодов. Для обслуживания системы, то есть чистки, нужно запроектировать встроенный люк с дверью. Чтобы мусор и различные осадки не оказывались внутри шахт над ними устанавливается дефлектор.

Согласно строительным нормам минимальная производительность системы должна исходить из следующего расчета: в тех комнатах, где постоянно находятся люди, каждый час должно происходить полное обновление воздуха. Что касается других помещений, то должно удаляться:

  • из кухни — не менее 60 м³/час при использовании электроплиты и не менее 90 м³/час при применении газовой;
  • ванны, уборной — не менее 25 м³/час, если санузел совмещенный, то не менее 50 м³/час.

При проектировании системы вентиляции коттеджей самой оптимальной является модель, при которой предусматривается прокладка общей вытяжной трубы через все помещения. Но если такой возможности нет, то вентиляционные ходы прокладываются из:

Таблица 1. Кратность воздухообмена вентиляции.

  • санузла;
  • кухни;
  • кладовки — при условии, что ее дверь открывается в жилую комнату. Если же она ведет в холл или кухню, то можно оборудовать лишь приточный канал;
  • котельной;
  • из комнат, которые разграничены с помещениями с вентиляцией более чем двумя дверьми;
  • если дом в несколько этажей, то, начиная со второго, при наличии входных дверей с лестницы каналы прокладывают также и с коридора, а при отсутствии — из каждого помещения.

Во время расчета количества каналов необходимо брать во внимание то, как оборудован пол на первом этаже. Если он деревянный и смонтирован на лагах, то предусматривается отдельный ход для вентиляции воздуха в пустотах под таким полом.

Кроме определения количества воздуховодов, в расчет системы вентиляции входит определение оптимального сечения каналов.

Вернуться к оглавлению

Параметры каналов и расчет вентиляции

При прокладывании воздуховодов могут использоваться как прямоугольные блоки, так и трубы. В первом случае минимальный размер стороны равняется 10 см. Во втором наименьшая площадь сечения воздуховода — 0,016 м², что соответствует диаметру трубы — 150 мм. По каналу с такими параметрами может проходить объем воздуха равный 30 м³/час при условии, что высота трубы будет более 3 м (при меньшем показателе естественная вентиляция не обеспечивается).

Таблица 2. Производительность канала вентиляции.

В том случае если требуется усилить производительность воздуховода, то либо расширяется площадь сечения трубы, либо увеличивается длина канала. Длина, как правило, обуславливается местными условиями — количеством и высотой этажей, наличием чердака. Чтобы сила тяги в каждом из воздуховодов была равной, на этаже протяженность каналов должна быть одинакова.

Чтобы определить какого размера требуется проложить каналы вентиляции, необходимо рассчитать то количество воздуха, которое нужно удалить. Принимается, что в помещения поступает воздух снаружи, далее он распространяется в комнаты с вытяжными шахтами и через них выводится.

Расчет производится поэтажно:

  1. Определяется наименьшее количество воздуха, которое должно поступать снаружи — Q п, м³/час, значение находится по таблице из СП 54.13330.2011 «Здания жилые многоквартирные» (таблица 1);
  2. Согласно нормативам определяется наименьшее количество воздуха, которое нужно вывести из дома — Q в, м³/час. Параметры указаны в разделе «Нормы производительности и каналы естественной вентиляции»;
  3. Полученные показатели сравнивают. За минимальную производительность — Q р, м³/час — принимают большую из них;
  4. Для каждого этажа определяется высота канала. Этот параметр устанавливается на основании размеров всего строения;
  5. Согласно таблице (таблица 2) находится число стандартных каналов, при этом их суммарная производительность не должна быть меньше минимальной расчетной;
  6. Полученное число каналов распределяют между помещениями, где воздуховоды должны быть в обязательном порядке.

Проектирование вентиляции жилого, общественного или производственного здания проходит в несколько этапов. Воздухообмен определяется исходя из нормативных данных, используемого оборудования и индивидуальных пожеланий заказчика. Объем проекта зависит от типа здания: одноэтажный жилой дом или квартира рассчитываются быстро, с минимальным количеством формул, а для производственного объекта требуется серьёзная работа. Методика расчета вентиляции строго регламентирована, а исходные данные прописаны в СНиП, ГОСТ и СП.

Подбор оптимальной по мощности и стоимости системы воздухообмена проходит пошагово. Порядок проектирования очень важен, так как от его соблюдения зависит эффективность работы конечного продукта:

  • Определение типа вентсистемы. Проектировщик анализирует исходные данные. Если требуется проветрить небольшое жилое помещение, то выбор падает на приточно-вытяжную систему с естественным побуждением. Этого будет достаточно, когда расход воздуха небольшой, вредных примесей нет. Если требуется рассчитать большой венткомплекс для завода или общественного здания, то предпочтение отдаётся механической вентиляции с функцией подогрева/охлаждения приточки, а если понадобится, то и с расчётом по вредностям.
  • Анализ выбросов. Сюда входит: тепловая энергия от осветительных приборов и станков; испарения от станков; выбросы (газы, химикаты, тяжёлые металлы).
  • Расчет воздухообмена. Задача систем вентилирования – удаление из помещения избытков тепла, влаги, примесей с равновесной или чуть отличающейся подачей свежего воздуха. Для этого определяется кратность воздухообмена, согласно которой подбирается оборудование.
  • Подбор оборудования. Производится по полученным параметрам: требуемый объем воздуха на приточку/вытяжку; температура и влажность внутри помещения; наличие вредных выбросов, подбираются вентустановки или готовые мультикомплексы. Самый важный из параметров – объём воздуха, необходимый для поддержания проектной кратности. Фильтры, калориферы, рекуператоры, кондиционеры и гидравлические насосы идут как дополнительные устройства сети, обеспечивающие качество воздуха.

Расчёт выбросов

Объём воздухообмена и интенсивность работы системы зависят от двух этих параметров:

  • Нормы, требования и рекомендации, прописанные в СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование», а также другой, более узкоспециализированной нормативной документации.
  • Фактические выбросы. Рассчитываются по специальным формулам для каждого источника, и приведены в таблице:

Тепловыделения, Дж

Двигатель электрический N – мощность двигателя по номиналу, Вт;

K1 – загрузочный коэффициент 0,7-0,9

k2η - коэффициент работы в одно время 0,5-1.

Приборы освещения
Человек n – расчётное число людей для этого помещения;

q – количество теплоты, которое выделяет организм одного человека. Зависит от температуры воздуха и интенсивности работы.

Поверхность бассейна V – скорость движение воздуха над водной поверхностью, м/с;

Т – температура воды, 0 С

F – площадь водного зеркала, м2

Влаговыделение, кг/ч

Водная поверхность, например бассейн Р - коэффициент массоотдачи;

F-площадь поверхности испарения, м 2 ;

Рн1, Рн2 - парциальные давления насыщенного водяного пара при определенной температуре воды и воздуха в помещении, Па;

РБ – давление барометрическое. Па.

Мокрый пол F - площадь мокрой поверхности пола, м 2 ;

t с, t м – температуры воздушных масс, замеренные по сухому/мокрому термометру, 0 С.

Используя данные, полученные в результате вычисления вредных выделений, проектировщик продолжает рассчитывать параметры вентиляционной системы.

Вычисление воздухообмена

Специалисты используют две основные схемы:

  • По укрупненным показателям. В данной методике не предусматриваются вредные выбросы, такие как тепло и вода. Условно назовем его «Способ №1».
  • Метод с учётом избытков тепла и влаги. Условное название «Способ №2».

Способ №1


Единица измерения - м 3 /ч (кубические метры в час). Применяют две упрощенные формулы:

L=K ×V(м 3 /ч); L=Z ×n (м 3 /ч), где

K – кратность воздухообмена. Отношение объёма приточки за одни час, к общему воздуху в помещении, крат в час;
V – объём помещения, м 3 ;
Z – значение удельного обмена воздуха за единицу верчения,
n – количество единиц измерения.

Подбор вентрешёток осуществляется по специальной таблице. При подборе также учитывается средняя скорость прохождение потока воздуха по каналу.

Способ №2

При расчёте учитывается ассимиляция тепла и влаги. Если в производственном или общественном здании избыток тепла, то используется формула:

где ΣQ - сумма тепловыделений от всех источников, Вт;
с – тепловая ёмкость воздуха, 1 кДж/(кг*К);
tyx – температура воздуха, направленного на вытяжку,°С;
tnp - температура воздуха, направленного на приточку,°С;
Температура воздуха, направленного на вытяжку:

где tp.3 – нормативная тем-ра в рабочей зоне, 0 С;
ψ- коэффициент увеличение температуры, зависящий от высоты измерения, равный 0,5-1,5 0 С/м;
Н – длина плеча от пола до середины вытяжки, м.

Когда технологический процесс предполагает выделение большого объема влаги, то используется другая формула:

где G – объём влаги, кг/ч;
dyx и dnp – содержание воды на один килограмм сухого воздуха приточки и вытяжки.

Существует несколько случаев, более подробно описанных в нормативной документации, когда требуемые воздухообмен определяется по кратности:

k – кратность смены воздуха в помещении, раз в час;
V - объём помещения, м 3 .

Расчёт сечения

Площадь поперечного сечения воздуховода измеряется в м 2 . Её можно посчитать по формуле:

где v – скорость воздушных масс внутри канала, м/с.

Различается для основных воздуховодов 6-12 м/с и боковых придатков не более 8 м/с. Квадратура влияет на пропускную способность канала, нагрузку на него, а также уровень шума и способ монтажа.

Расчёт потерь давления

Стенки воздуховода не гладкие, и внутренняя полость не заполнена вакуумом, поэтому часть энергии воздушных масс при движении теряется на преодоления этих сопротивлений. Величина потери рассчитывается по формуле:

где ג – сопротивление трению, определяется, как:

Формулы, приведенные выше, являются правильными для каналов круглого сечения. Если воздуховод квадратный или прямоугольный, то существует формула приведения к эквиваленту диаметра:

где a,b – размеры сторон канала, м.

Мощность напора и двигателя

Напор воздуха от лопастей H должен полностью компенсировать потери давления P, при этом создавая расчётное динамическое P д на выходе.

Мощность электрического двигателя вентилятора:

Подбор калорифера

Часто отопление интегрируется в систему вентиляции. Для этого используются калориферы, а также метод рециркуляции. Выбор устройства осуществляется по двум параметрам:

  • Q в – предельный расход тепловой энергии, Вт/ч;
  • F k – определение поверхности нагрева для калорифера.

Расчёт гравитационного давления

Применяется только для естественной системы вентилирования. С его помощью определяется её производительность без механического побуждения.

Подбор оборудования

По полученным данным о воздухообмене, форме и размере сечение воздуховодов и решёток, количестве энергии для обогрева подбирается основное оборудование, а также фитинги, дефлектор, переходники и другие сопутствующие детали. Вентиляторы подбираются с запасом мощности под пиковые периоды работы, воздуховоды с учетом агрессивности среды и объёмов вентилирования, а калориферы и рекуператоры - исходя из тепловых запросов системы.

Ошибки при проектировании

На этапе создания проекта нередко встречаются ошибки и недоработки. Это может быть , обратная или недостаточная тяга, задувание (верхние этажи многоэтажных жилых домов) и другие проблемы. Часть из них можно решить и после завершения монтажа, с помощью дополнительных установок.

Яркий пример низкоквалифицированного расчета - недостаточная тяга на вытяжке из производственного помещения без особо вредных выбросов. Допустим, вентканал заканчивается круглой шахтой, возвышающейся над крышей на 2 000 – 2 500 мм. Поднимать её выше не всегда возможно и целесообразно, и в подобных случаях используется принцип факельного выброса. В верхней части круглой вентшахты устанавливается наконечник с меньшим диаметром рабочего отверстия. Создаётся искусственное сужение сечения, которое влияет на скорость выброса газа в атмосферу - она многократно увеличивается.


Методика расчёта вентиляции позволяет получить качественную внутреннюю среду, правильно оценив негативные факторы, её ухудшающие. В компании «Мега.ру» работают профессиональные проектировщики инженерных систем любой сложности. Мы оказываем услуги на территории Москвы и соседних областей. Также компания успешно занимается удалённым сотрудничеством. Все способы связи указаны на странице , обращайтесь.

Вентиляция любого помещения – необходимое условие, даже если это склад, не посещаемый людьми. А в общественных и жилых зданиях система вентиляции должна быть тщательно просчитана и устроена с учетом нормативов. Для каждого закрытого помещения, в том числе и мансардного, необходимо учесть систему воздухообмена, которая способствует комфортному нахождению людей. В любом жилом доме можно увидеть вентиляционные отверстия, которые отвечают за поступление свежего воздуха. В общественных помещениях, где предполагается нахождение людей, должна быть устроена приточно-вытяжная вентиляция осуществляющая циркуляцию воздушных масс. Санитарные нормы строго регламентируют устройство вентиляционных систем с учетом объемов помещений и предполагаемого количества, находящихся в нем людей. Ниже рассмотрим виды вентиляционных систем и методику расчетов воздухообмена.

Вентиляционные системы различаются по степени сложности их конструкции. Существуют несколько типов:

  • Простые, естественные, осуществляющие приток чистого воздуха через каналы, сделанные в стенах здания.
  • Приточно-вытяжные, имеющие отдельные каналы для поступления и для оттока воздуха.

  • Приточно-вытяжные, принудительные, функционирующие на встроенных в воздуховоды канальных вентиляторах.

  • Комбинированные или комплексные, контролирующие и обеспечивающие приток и вытяжку воздуха, а также регулирующие температуру и влажность в помещении.

От качества работы вентиляционной системы зависит комфортность нахождения людей внутри здания. Нормативы количества поступающего воздуха разработаны и опубликованы Роспотребнадзором, который и контролирует работу вентиляции в общественных зданиях.

Общая картина вентилирования современных домов

Что нужно знать о воздушных потоках

Основные этапы расчетов

Естественная вентиляция в жилых и общественных зданиях устраивается при их строительстве и не требует дополнительных расчетов. Поэтому разговор пойдет о принудительных системах. Первоочередной задачей для проведения точных расчетов вентиляционных систем является учет микроклимата помещений. Это допустимые и нормативно-рекомендуемые значения влажности, температуры и объемов циркуляции воздуха. В зависимости от типов выбранной системы, приведенных выше, определяются задачи – только воздухообмен или комплексное кондиционирование помещения.

Расчет поступаемого извне воздушного потока – первый и важнейший параметр, регулируемый санитарно-гигиеническими нормами. Он строится на минимальных объемах потребления и расходов воздуха за счет отточных каналов и работы технологического оборудования. Определение воздухообмена, который измеряется кубометрами замещаемого воздуха в час, зависит от объемов помещения и его назначения. Для квартир подача наружного воздуха осуществляется в комнаты, где, как правило, жильцы находятся долгое время. Это гостиная и спальня, реже кабинет и холлы. В коридорах, кухнях и санузлах притока, обычно, не делают, в них устанавливаются только вытяжные отверстия. Воздушные массы поступают естественным путем из соседних комнат, где сделан приток. Такая схема заставляет воздушный поток двигаться через жилые комнаты в технические, «выдавливая» отработанную воздушно-газовую смесь в вытяжные каналы. Одновременно при этом удаляются неприятные запахи, не распространяясь по квартире или дому.

Расчеты включают в себя два значения воздухообмена:

  • По производительности – исходя из нормативов воздушной массы, приходящейся на одного человека.
  • По кратности – сколько раз происходит смена воздуха в помещении за один час.

Важно! Для выбора производительности планируемой системы вентиляции принимается наибольшее из полученных значений .

Производительность по воздуху

Для жилых помещений количество поступаемого воздуха должно рассчитываться в соответствии со строительными нормами и правилами (СНиП) № 41-01-2003. Здесь указано количество расхода одним человеком – 60 куб.м в час. Этот объем должен быть компенсирован притоком внешнего воздуха. Для спален допускается меньший объем – 30 куб.м в час на одного человека. При проведении расчетов следует учитывать только постоянно проживающих людей, т.е. не следует принимать для просчета воздухообмена количество гостей посещающих помещение время от времени. Для комфортного проведения вечеринок существуют системы регулирующие приток воздуха в разных комнатах. Такое оборудование позволит увеличить приток воздуха в гостиную, за счет уменьшения его в спальне.

Расчеты проводятся по формуле: L = N х Ln, где: L - расчетный объем поступающего воздуха куб.м в час; N - предполагаемое число людей; Ln - нормативный расход воздуха 1 чел. – для спален - 30 куб.м в час и для прочих помещений- 60 куб.м в час.

Производительность по кратности

Расчет кратности обмена воздуха в помещениях следует проводить, основываясь на параметрах помещения, для этого потребуется план дома или квартиры. В плане должно быть указано назначение помещения и его размеры (высота, площадь или длина и ширина). Для комфортного ощущения требуется минимум однократный обмен всего объема воздуха.

Следует отметить, что приточные каналы, как правило, дают объем воздуха для двукратного обмена, тогда как вытяжные рассчитаны на однократный воздухообмен. В этом нет противоречий, так как расход воздуха происходит еще и естественным путем – через щели, окна и двери. Проведя расчеты обмена воздуха для каждого помещения складываем значения, чтобы вычислить производительность вентсистемы. После чего можно будет правильно подобрать мощность приточных и вытяжных вентиляторов. Нормативные показатели производительности для различных помещений следующие:

  • системы вентиляции жилых помещений - 150-500 куб.м в час;
  • в частных домах и коттеджах - 550-2000 куб.м в час;
  • в офисных помещениях - 1100-10000 куб.м в час.

Расчет проводим по формуле: L = NxSxH, где: L - расчетный объем поступающего воздуха куб.м в час; N - норматив кратности обмена воздуха: дома и квартиры – 1-2, офисные помещения – 2-3; S - площадь, кв.м; Н - высота, м;

Пример расчета аэродинамического расчета вентиляции

В расчетах вам также может помочь данный калькулятор



Похожие статьи