Методическая разработка на тему: математические исследования на уроках математики. Анализ математический

Математические методы

Формализация и моделирование процессов сбора, движения и преобразования информации связаны с использованием математических методов, реализующих необходимые вычислительные и логические операции, в том числе и в автоматизированных информационных системах. Поэтому правовая информатика тесно связана с математикой и использует методы различных математических наук.

В последнее время при изучении информационных процессов в области права используется теория вероятностей, математическая статистика, математическая логика, исследование операций и многие другие математические науки и дисциплины. Математические методы, специфически преломляясь в теории права, обогащают и усиливают метод правовой науки, но, естественно, не заменяют его.

Сегодня можно говорить, что усилия специалистов, применяющих точные методы математики в правовой области, сосредоточены в двух направлениях: первое - это математическая обработка результатов правовых исследований; второе - исследование структуры права математическими методами. Эти направления составляют основу для создания и применения в правовой области различных автоматизированных систем обработки социально-правовой информации.

Первое направление разрабатывалось еще в 1775 г. Пьером Симоном Лапласом, предложившим использовать методы теории вероятностей для оценки свидетельских показаний, для анализа выборов и решений собраний и для определения вероятностей ошибок в судебных приговорах.

Его последователи Симеон Пуассон и Огюст Курно соответственно в 1837 г. и в 1877 г. опубликовали трактат «Исследование вероятности по материалам уголовных и гражданских судебных решений на основе общих правил исчисления вероятностей» и монографию «Основы теории шансов и вероятностей», в которой глава 15 была названа: «Теория вероятностей судебных решений. Применение ее к статистике гражданских дел». В США эстафету правометрических исследований принял профессор из Мичигана Дж. Шуберт, который в 1959 г. опубликовал работу «Количественный анализ судейского поведения». В 1961 г. Стюарт Нагель опубликовал ряд работ, среди которых «Ожидание вердикта» содержит количественный показатель возможности выиграть или проиграть иски, вытекающие из причинения вреда, в зависимости от наличия в деле целого ряда переменных, которые обрабатываются методом статистических обобщений.

В настоящее время в рамках этого направления успешно применяются различные математические методы для решения следующих задач: количественное описание правовых явлений; обеспечение учета и отчетности в правовой деятельности путем численной обработки различных статистических показателей.

Второе направление основано на идее сведения рассуждений к вычислениям и имеет глубокие исторические корни, восходящие к Р. Декарту. Он подразумевал возможность создания искусственного языка науки, дал его развернутую характеристику и тех громадных выгод, которые связаны с применением последнего. Декарт предполагал наличие некоторого природного порядка в наших мыслях, который сравнивал с порядком в мире чисел. При всем бесконечном множестве чисел каждое из них имеет единственное знаковое представление, следовательно, каждому из них можно дать собственное имя, что позволит действия с ними записывать особым компактным языком. Поскольку для чисел такой универсальный язык разработан, то, по мнению Декарта, со временем будет сконструирован еще более универсальный язык, охватывающий не только числа, но и любые объекты, которые могут стать предметом исследования. Такой язык позволит обозначать любые идеи путем выделения простых представлений и фиксации элементов, из которых состоит каждая мысль. Тем самым будет исключена любая возможность заблуждения. Такой язык противопоставит словам, имеющим неконкретное значение, четко определенные искусственные элементы. Вместо «давайте поспорим» ученые будут говорить «давайте вычислим».

Развитию идеи универсального языка науки большое внимание уделено в работах Г. Лейбница, который заложил фундамент математической логики. По Лейбницу, идеал общего метода, благодаря которому возможно будет систематизировать вечные истины, доказывать их, даже открывать новые, состоит в следующем:

1) необходимо разложить все понятия на простейшие, подобно тому, как в математике составные числа разлагаются на произведение простых множителей. Число простейших понятий в таком языке не может быть велико;

2) обозначив каждое из понятий особым символом, мы получим «алфавит человеческой мысли»;

3) всевозможные комбинации простых понятий дадут нам совокупность сложных. И хотя число первых невелико, однако, как показывают формулы комбинаторики, число их комбинаций может быть почти неисчерпаемым;

4) необходимо ввести особые символы для основных соотношений между понятиями и установить правила употребления и комбинации этих символов.

Таким образом, предполагалось процесс мышления свести к особого рода механическим исчислениям, чем, по существу, и занимается современная символическая логика.

Современная логика создала множество систем, описывающих отдельные фрагменты содержательных рассуждений. Для моделирования структуры правовых норм специально разработана «нормативная логика», предметом исследования которой являются логическая структура и логические связи нормативных высказываний.

Так, оценивая принципы логического моделирования структуры правовых норм, правоотношений и нормативных умозаключений, В. Кнапп и А. Герлох указывают, что лежащая в их основе классификация правовых норм является упрощенной абстракцией действительных правовых норм, носящих сложный характер. Например, исследуя сравнимость и совместимость правовых понятий, эти авторы приходят к выводу, что несравнимость понятий «наследственное право» и «избирательное право» нельзя доказать логическим рассуждением в рамках любой из логических теорий, поскольку наличие общего признака «право» делает формально сравнимыми эти понятия. Для доказательства несравнимости этих понятий, по мнению авторов, нельзя обойтись без аппарата теории права.

Другой вид формализации правовых норм основан на использовании математической логики для моделирования логической структуры правовой нормы.

Математическая логика - современный вид формальной логики, т.е. науки, изучающей умозаключения с точки зрения их формального строения.

Любая мысль в форме понятий, суждений или умозаключений не существует вне языка. Выявить и исследовать логические структуры можно лишь путем анализа языковых выражений.



Под высказыванием принято понимать некоторое предположение, о котором имеет смысл говорить, что оно истинно или ложно. Над высказываниями определены следующие операции:

· конъюнкция (логическое «и»);

· дизъюнкция (логическое «или»);

· отрицание (логическое «не»);

· импликация («если.., то…»).

Так, А.О. Гаврилов предложил, используя логические операции, провести моделирование логической структуры правовой нормы. Цель моделирования - выявить логические (включая латентные) связи правовой нормы. Логическая структура правовой нормы может быть представлена в следующем виде:

((p d ) → ˥ s ) → (˥ d s )

где p - гипотеза нормы;

d - диспозиция;

s - санкция.

Приведенная формализация языка права позволяет промоделировать и проанализировать некоторые правовые нормы с помощью такого нового класса автоматизированных систем правовой информации, как экспертные системы.

Однако необходимо отметить, что применение языка математики для формализации права существенно ограничено. Это определяется во многом тем, что, как признает А.Г. Ольшанецкий, «среди юристов не сложилось еще единого мнения о логической природе, логической специфике юридических понятий, их конструктивной роли в развитии науки правоведения, в образовании нормативно-правового детерминанта, его логического движения в регулятивном механизме общественных систем. Мнения ученых в этом отношении неоднозначны, имеют спорный, порой противоречивый характер. В частности, высказывается мнение, что определенной логической спецификой обладают лишь некоторые понятия уголовного права. В понятиях других отраслей права специфически юридического либо незначительно, либо его вообще нет... Им присущи лишь особенности внелогического характера. В структуре... их содержания, в характере признаков, образующих его, нет каких-либо особенностей, которые давали бы возможность выделить эти понятия в особый класс научных понятий».

По мнению О.А. Гаврилова, существует пять основных причин, по которым математика не может стать универсальным инструментом исследований в области права:

1. С ростом сложности и целостности социально-правового объекта значительно уменьшается возможность его расчленения на формализуемые элементы.

2. Основные категории общественных наук - это сложные, многогранные и многоплановые понятия, связанные множеством неформализуемых связей, таких как базис, надстройка, производительные силы, производственные отношения, государство, право, экономика, политика, демократия.

3. Государство и право, как явления классового общества, представляют собой целостные социально-политические системы. Они характеризуются большим числом качественных признаков и связей, которые не являются ни количественными, ни вероятностными, ни функциональными (в математическом смысле слова) и поэтому не поддаются математической формализации.

4. Проводя сравнительный анализ математических методов и традиционных средств юридической науки, нельзя не видеть их взаимодополняющей противоположности.

5. Отличительная особенность исследований, выполненных на базе традиционных качественных методов, - их всесторонность и многообразность, гибкость охвата явлений. Отличительная черта математических исследований - это их высокая точность. Применяя традиционные приемы юридической науки, исследователь-юрист получает выигрыш в полноте картины, но зато теряет все точности. И наоборот, применяя количественные методы исследования, он выигрывает в точности научного описания, зато теряет в его гибкости и всесторонности.

Следует отметить, что не все юристы придерживаются такой точки зрения. Так, В.П. Павлов, исследуя возможность математизации правовых исследований, не соглашается с высказанной выше точкой зрения О.А. Гаврилова.

По его мнению, история любой науки свидетельствует о том, что на начальном уровне познания, на котором производится накопление научных фактов о наблюдаемых свойствах изучаемых явлений и эмпирических закономерностях (в виде тенденций развития интересующего нас явления в практической жизни), используют приемы наблюдения, эксперимента, измерения, описания, способы обобщения, сравнения анализа и синтеза, классификацию и систематизацию. Для реализации этих способов в правоведении широко используют традиционные общенаучные методы, такие как философский, метод сравнительного правоведения, метод комплексного исследования. Однако подлинно теоретический уровень достигается в том случае, когда выдвигаются научные гипотезы, формулируются законы и создаются теории. Этому уровню соответствуют различные методы объяснения конкретных явлений, среди которых можно выделить гипотетические, структурные, функциональные, метод абстрагирования, включающий в себя идеализацию и обобщение некоторых понятий, и метод обоснования гипотез и построения теорий. Этот уровень достижим только путем привлечения математики как наиболее универсального инструмента анализа материального мира. Диалектическая связь этих двух уровней заключается в том, что установление эмпирических фактов как первоначальный этап познания всегда осуществляется на базе определенных теоретических знаний предшествующего уровня, а сами эмпирические факты являются базой для повышения уровня теоретического знания в исследуемой области. Поэтому взаимодополняющая связь традиционных и математических методов заключается не в их противоположности, а как раз в том, что их универсальность позволяет обеспечить наглядность, точность и полноту исследуемого явления. Благодаря этому расширяется поле для осмысления при помощи традиционных средств тех областей исследуемого явления, которые были скрыты от наблюдателя фрагментарностью эмпирической картины явления.

Таким образом, основным препятствием на пути математического описания правовых норм является неоднозначность понятийного аппарата юридической науки, которая многократно возрастает при некритичном использовании математических средств для его анализа. Противоречие состоит в том, что без применения математического аппарата невозможно обеспечить полноту и точность правовых исследований, а применение математического аппарата невозможно в условиях существующей неоднозначности понятийного аппарата права.

Метод проектов, обладающий огромными возможностями по формированию уневерсальных учебных действий, находит все более широкое распространение в системе школьного образования.Но "уместить" метод проектов в класснно-урочную систему достаточно трудно. Я включаю мини исследования в обычный урок. Такая форма работы открывает большие возможности для формирования познавательной деятельности и обеспечивает учет индивидуальных особенностей учащихся, готовит почву для развития навыков над большими проектами.

Скачать:


Предварительный просмотр:

«Если ученик в школе не научился сам ничего творить, то и в жизни он будет только подражать, копировать, так как мало таких, которые бы, научившись копировать, умели сделать самостоятельное приложение этих сведений». Л.Н.Толстой.

Характерной чертой современного образования является резкое увеличение объема информации, которую необходимо усвоить учащимся. A степень развития обучающегося измеряется и оценивается его способностью самостоятельно приобретать новые знания и использовать их в учебной и практической деятельности. Современный педагогический процесс требует использования инновационных технологий в обучении.

ФГОС нового поколения требует использования в образовательном процессе технологий деятельностного типа, методы проектно-исследовательской деятельности определены как одно из условий реализации основной образовательной программы.

Особая роль отводится такой деятельности на уроках математики и это не случайно. Математика является ключом к познанию мира, базой научно-технического прогресса и важной компонентой развития личности. Она призвана воспитать в человеке способность понять смысл поставленной перед ним задачи, умение логично рассуждать, усвоить навыки алгоритмического мышления.

Уместить метод проектов в классно-урочную систему достаточно трудно. Я пытаюсь разумно совмещать традиционную и личностно-ориентированную систему путем включения элементов исследования в обычный урок. Приведу ряд примеров.

Так при изучении темы «Окружность» мы проводим с учащимися следующее исследование.

Математическое исследование «Окружность».

  1. Подумайте, как построить окружность, какие инструменты для этого необходимы. Обозначение окружности.
  2. Для того чтобы дать определение окружности посмотрим, какими свойствами обладает эта геометрическая фигура. Соединим центр окружности с точкой принадлежащей окружности. Измерим длину этого отрезка. Повторим эксперимент три раза. Сделаем вывод.
  3. Отрезок, соединяющий центр окружности с любой ее точкой, называется радиусом окружности. Это определение радиуса. Обозначение радиуса. Пользуясь этим определением, постройте окружность с радиусом равным 2см5мм.
  4. Постройте окружность произвольного радиуса. Постройте радиус, измерьте его. Запишите результаты измерений. Постройте еще три различных радиуса. Сколько радиусов можно провести в окружности.
  5. Попытаемся, зная свойство точек окружности, дать ее определение.
  6. Постройте окружность произвольного радиуса. Соедините две точки окружности так, чтобы этот отрезок проходил через центр окружности. Этот отрезок называется диаметром. Дадим определение диаметра. Обозначение диаметра. Постройте еще три диаметра. Сколько диаметров имеет окружность.
  7. Постройте окружность произвольного радиуса. Измерьте диаметр и радиус. Сравните их. Повторите эксперимент еще три раза с различными окружностями. Сделайте вывод.
  8. Соедините две любые точки окружности. Полученный отрезок называется хордой. Дадим определение хорды. Постройте еще три хорды. Сколько хорд имеет окружность.
  9. Является ли радиус хордой. Докажите.
  10. Является ли диаметр хордой. Докажите.

Работы исследовательского характера могут носить пропедевтический характер. Исследовав окружность можно рассмотреть ряд интересных свойств, которые учащиеся могут сформулировать на уровне гипотезы, а потом уже доказать эту гипотезу. Например, следующее исследование:

«Математическое исследование»

  1. Построй окружность радиуса 3 см и проведи ее диаметр. Соедини концы диаметра с произвольной точкой окружности и измерь угол образованный хордами. Проведи те же построения еще для двух окружностей. Что ты замечаешь.
  2. Повтори эксперимент для окружности произвольного радиуса и сформулируй гипотезу. Можно ли считать ее доказанной с помощью проведенных построений и измерений.

При изучении темы «Взаимное расположение прямых на плоскости» проводится математическое исследование в группах.

Задания для групп:

  1. группа.

1.В одной системе координат построить графики функции

У = 2х, у = 2х+7, у = 2х+3, у = 2х-4, у = 2х-6.

2.Ответьте на вопросы, заполнив таблицу:

Математические методы наиболее широко используются при проведении системных исследований. При этом решение практических задач математическими методами последовательно осуществляется по следующему алгоритму:

    математическая формулировка задачи (разработки математической модели);

    выбор метода проведения исследования полученной математической модели;

    анализ полученного математического результата.

Математическая формулировка задачи обычно представляется в виде чисел, геометрических образов, функций, систем уравнений и т. п. Описание объекта (явления) может быть представлено с помощью непрерывной или дискретной, детерминированной или стохастической и другими математическими формами.

Математическая модель представляет собой систему математических соотношений (формул, функций, уравнений, систем уравнений), описывающих те или иные стороны изучаемого объекта, явления, процесса или объект (процесс) в целом.

Первым этапом математического моделирования является постановка задачи, определение объекта и целей исследования, задание критериев (признаков) изучения объектов и управления ими. Неправильная или неполная постановка задачи может свести на нет результаты всех последующих этапов.

Модель является результатом компромисса между двумя противоположными целями:

    модель должна быть подробной, учитывать все реально существующие связи и участвующие в его работе факторы и параметры;

    в то же время модель должна быть достаточно простой, чтобы можно было получить приемлемые решения или результаты в приемлемые сроки при определенных ограничениях на ресурсы.

Моделирование можно назвать приближенным научным исследованием. А степень его точности зависит от исследователя, его опыта, целей, ресурсов.

Допущения, принимаемые при разработке модели, являются следствием целей моделирования и возможностей (ресурсов) исследователя. Они определяются требованиями точности результатов, и как сама модель, являются результатом компромисса. Ведь именно допущения отличают одну модель одного и того же процесса от другой.

Обычно при разработке модели отбрасываются (не принимаются во внимание) несущественные факторы. Константы в физических уравнениях считаются постоянными. Иногда усредняются некоторые величины, изменяющиеся в процессе (например, температура воздуха может считаться неизменной за какой-то промежуток времени).

    1. Процесс разработки модели

Это процесс последовательной (и возможно, неоднократной) схематизации или идеализации исследуемого явления.

Адекватность модели - это ее соответствие тому реальному физическому процессу (или объекту), который она представляет.

Для разработки модели физического процесса необходимо определить:

Иногда используется подход, когда применяется модель небольшой полноты, носящая вероятностный характер. Потом с помощью ЭВМ производится ее анализ и уточнение.

Проверка модели начинается и проходит в самом процессе ее построения, когда выбираются или устанавливаются те или иные взаимосвязи между ее параметрами, оцениваются принятые допущения. Однако после сформирования модели в целом надо проанализировать ее с некоторых общих позиций.

Математическая основа модели (т. е. математическое описание физических взаимосвязей) должна быть непротиворечивой именно с точки зрения математики: функциональные зависимости должны иметь те же тенденции изменения, что и реальные процессы; уравнения должны иметь область существования не менее диапазона, в котором проводится исследование; в них не должно быть особых точек или разрывов, если их нет в реальном процессе, и т. д. Уравнения не должны искажать логику реального процесса.

Модель должна адекватно, т. е. по возможности точно, отражать действительность. Адекватность нужна не вообще, а в рассматриваемом диапазоне.

Расхождения между результатами анализа модели и реальным поведением объекта неизбежны, так как модель - это отражение, а не сам объект.

На рис. 3. представлено обобщенное представление, которое используется при построении математических моделей.

Рис. 3. Аппарат для построения математических моделей

При использовании статических методов наиболее часто используется аппарат алгебры и дифференциальные уравнения с независимыми от времени аргументами.

В динамических методах таким же образом используются дифференциальные уравнения; интегральные уравнения; уравнения в частных производных; теория автоматического управления; алгебра.

В вероятностных методах используются: теория вероятностей; теория информации; алгебра; теория случайных процессов; теория Марковских процессов; теория автоматов; дифференциальные уравнения.

Важное место при моделировании занимает вопрос о подобии модели и реального объекта. Количественные соответствия между отдельными сторонами процессов, протекающих в реальном объекте и его модели, характеризуются масштабами.

В целом подобие процессов в объектах и модели характеризуется критериями подобия. Критерий подобия - это безразмерный комплекс параметров, характеризующий данный процесс. При проведении исследований в зависимости от области исследований применяют различные критерии. Например, в гидравлике таким критерием является число Рейнольдса (характеризует текучесть жидкости), в теплотехнике - число Нусссельта (характеризует условия теплоотдачи), в механике - критерий Ньютона и т. д.

Считается, что если подобные критерии для модели и исследуемого объекта равны, то модель является правильной.

К теории подобия примыкает еще один метод теоретического исследования - метод анализа размерностей, который основан на двух положениях:

    физические закономерности выражаются только произведениями степеней физических величин, которые могут быть положительными, отрицательными, целыми и дробными; размерности обоих частей равенства, выражающего физическую размерность, должны быть одинаковы.

ВВЕДЕНИЕ. ДИСЦИПЛИНА ИССЛЕДОВАНИЕ ОПЕРАЦИЙ И ЧЕМ ОНА ЗАНИМАЕТСЯ

Формирование исследования операций как самостоятельной ветви прикладной математики относится к периоду 40-х и 50-х годов. Последу­ющие полтора десятилетия были отмечены широким применением полу­ченных фундаментальных теоретических результатов к разнообразным практическим задачам и связанным с этим переосмыслением потенци­альных возможностей теории. В результате исследование операций при­обрело черты классической научной дисциплины, без которой немыс­лимо базовое экономическое образование.

Обращаясь к задачам и проблемам, составляющим предмет исследо­вания операций, нельзя не вспомнить о вкладе, внесенном в их решение представителями отечественной научной школы, среди которых в пер­вую очередь должен быть назван Л. В. Канторович, ставший в 1975 г. лауреатом Нобелевской премии за свои работы по оптимальному ис­пользованию ресурсов в экономике.

Начало развития исследования операций как науки традицион­но связывают с сороковыми годами двадцатого столетия. Среди первых исследований в данном направлении может быть назва­на работа Л. В. Канторовича "Математические методы органи­зации и планирования производства", вышедшая в 1939 г. В за­рубежной литературе отправной точкой обычно считается вышедшая в 1947 г. работа Дж. Данцига, посвященная реше­нию линейных экстремальных задач.

Следует отметить, что не существует жесткого, устоявше­гося и общепринятого определения предмета исследования опе­раций. Часто при ответе на данный вопрос говорится, что "исследование операций представляет собой комплекс научных методов для решения задач эффективного управления организационными системами".

Второе определение: Исследование операций – это научная подготовка принимаемого решения – это совокупность методов, предлагаемых для подготовки и нахождения самых эффективных или самых экономичных решений.

Природа систем, фигурирующих в приведенном определении под именем "организационных", может быть самой различной, а их общие математические модели находят применение не толь­ко при решении производственных и экономических задач, но и в биологии, социологических исследованиях и других практи­ческих сферах. Кстати, само название дисциплины связано с применением математических методов для управления военны­ми операциями.

Несмотря на многообразие задач организационного управ­ления, при их решении можно выделить некоторую общую последовательность этапов, через которые проходит любое операционное исследование. Как правило, это:

1. Постановка задачи.

2. Построение содержательной (вербальной) модели рас­сматриваемого объекта (процесса). На данном этапе происходит формализация цели управления объектом, выделение возмож­ных управляющих воздействий, влияющих на достижение сфор­мулированной цели, а также описание системы ограничений на управляющие воздействия.

3. Построение математической модели, т. е. перевод сконст­руированной вербальной модели в ту форму, в которой для ее изучения может быть использован математический аппарат.

4. Решение задач, сформулированных на базе построенной математической модели.

5. Проверка полученных результатов на их адекватность природе изучаемой системы, включая исследование влияния так называемых внемодельных факторов, и возможная коррек­тировка первоначальной модели.

6. Реализация полученного решения на практике.

Центральное место в данном курсе отведено вопросам, отно­сящимся к четвертому пункту приведенной выше схемы. Это делается не потому, что он является самым важным, сложным или интересным, а потому, что остальные пункты существенно зависят от конкретной природы изучаемой системы, в силу чего для действий, которые должны производиться в их рамках, не могут быть сформулированы универсальные и содержательные рекомендации.

В самых разнообразных областях человеческой деятельности встречаются сходные между собой задачи: организация производства, эксплуатация транспорта, боевые действия, расстановка кадров, телефонная связь и т.д. Возникающие в этих областях задачи сходны между собой по постановке, обладают рядом общих признаков и решаются сходными методами.

Пример :

Организуется какое-то целенаправленное мероприятие (система действий), которое можно организовать тем или иным способом. Необходимо выбрать определенное решение из ряда возможных вариантов. Каждый вариант имеет преимущества и недостатки – сразу не ясно, какой из них предпочтительнее. С целью прояснить обстановку и сравнить между собой по ряду признаков различные варианты, организуется серия математических расчетов. Результаты расчетов показывают, на каком варианте остановится.

Математическое моделирование в исследовании операций является, с одной стороны, очень важным и сложным, а с дру­гой - практически не поддающимся научной формализации процессом. Заметим, что неоднократно предпринимавшиеся по­пытки выделить общие принципы создания математических мо­делей приводили либо к декларированию рекомендаций самого общего характера, трудноприложимых для решения конкрет­ных проблем, либо, наоборот, к появлению рецептов, примени­мых в действительности только к узкому кругу задач. Поэтому более полезным представляется знакомство с техникой математического моделирования на конкретных примерах.

1) План снабжения предприятия.

Имеется ряд предприятий, использующих различные виды сырья; имеется ряд сырьевых баз. Базы связаны с предприятиями различными путями сообщения (железные дороги, автотранспорт, водный, воздушный транспорт). Каждый транспорт имеет свои тарифы. Требуется разработать такой план снабжения предприятий сырьем, чтобы потребности в сырье были удовлетворены при минимальных расходах на перевозки.

2) Постройка участка магистрали.

Сооружается участок железнодорожной магистрали. В нашем распоряжении определенное количество средств: людей, техники и т.п. Требуется назначить очередность работ, распределить людей и технику по участкам пути таким образом, чтобы завершить строительство в минимальные сроки.

Выпускается определенный вид изделий. Для обеспечения высокого качества продукции требуется организовать систему выборочного контроля: определить размер контрольной партии, набор тестов, правила отбраковки и т.д. Требуется обеспечить заданный уровень качества продукции при минимальных расходах на контроль.

4) Военные действия.

Целью в данном случае является уничтожение вражеского объекта.

Подобные задачи встречаются в практике часто. Они имеют общие черты. В каждой задаче определена цель – цели эти похожи; заданы некоторые условия – в рамках этих условий и нужно принять решение, чтобы данное мероприятие было наиболее выгодным. В соответствии с этими общими чертами применяются и общие методы.

1. ОБЩИЕ ПОНЯТИЯ

1.1. Цель и основные понятия в исследованиях операций

Операция – это всякая система действий (мероприятие), объединенных единым замыслом и направленных к достижению какой-то цели. Это управляемое мероприятие, то есть от нас зависит, каким способом выбрать некоторые параметры, характеризующие его организацию.

Каждый определенный выбор зависящих от нас параметров называется решением.

Целью исследования операций является предварительное количественное обоснование оптимальных решений.

Те параметры, совокупность которых образует решение, называются элементами решения. В качестве элементов решения могут быть различные числа, векторы, функции, физически признаки и т.д.

Пример : перевозка однородного груза.

Существуют пункты отправления: А 1 , А 2 , А 3 ,…, А m .

Имеются пункты назначения: В 1 , В 2 , В 3 ,…, В n .

Элементами решения здесь будут числа x ij , показывающие, какое количество грузов будет отправлено из i-того пункта отправления в j -ый пункт назначения.

Совокупность этих чисел: x 11 , x 12 , x 13 ,…, x 1 m ,…, x n 1 , x n 2 ,…, x nm образует решение.

Чтобы сравнить между собой различные варианты, необходимо иметь какой-то количественный критерий – показатель эффективности (W ). Данный показатель называется целевой функцией.

Этот показатель выбирается так, чтобы он отражал целевую направленность операции. Выбирая решение, стремимся, чтобы данный показатель стремился к максимуму или к минимуму. Если W – доход, то W max; а если W – расход, то W min.

Если выбор зависит от случайных факторов (погода, отказ техники, колебания спроса и предложения), то в качестве показателя эффективности выбирается среднее значение – математическое ожидание – .

В качестве показателя эффективности иногда выбирают вероятность достижения цели. Здесь цель операции сопровождается случайными факторами и работает по схеме ДА-НЕТ.

Для иллюстрации принципов выбора показателя эффективности вернемся к рассмотренным ранее примерам:

1) План снабжения предприятия.

Показатель эффективности виден в цели. R – число – стоимость перевозок, . При этом все ограничения должны быть выполнены.

2) Постройка участка магистрали.

В задаче большую роль играют случайные факторы. В качестве показателя эффективности выбирают среднее ожидаемое время окончания стройки .

3) Выборочный контроль продукции.

Естественный показатель эффективности, подсказанный формулировкой задачи – это средние ожидаемые расходы на контроль за единицу времени, при условии, что система контролирует обеспечение заданного уровня качества.

Сопровождается физическим или математическим моделированием. Физическое моделирование... макетов и их трудоемкое исследование . Математическое моделирование осуществляют с использованием... на моделирование необходимо проделать следующие операции : 1. вход в меню...

  • Исследование интегрирующего и дифференцирующего усилителей на базе ОУ

    Лабораторная работа >> Коммуникации и связь

    Работы является экспериментальное исследование свойств и характеристик... это одна из основных математических операций и ее электрическая реализация... ДБ Осциллограммы выходных напряжений при исследованиях в импульсном режиме: Интегрирующий усилитель...

  • Математические методы в экономическом анализе

    Контрольная работа >> Экономико-математическое моделирование

    Некоторые методы математического программирования и методы исследования операций , к оптимизационным приближенным - часть методов математического программирования, исследования операций , экономической...

  • Математические игры как средство развития логического мышления

    Дипломная работа >> Педагогика

    Развитие логического мышления. Предмет исследования : математические игры с помощью которых... действий с использованием логических операций . Умственные действия образуют... практических компонентов работы. Сложные операции абстрактного мышления переплетаются с...



  • Похожие статьи